optim theory
Recently Published Documents


TOTAL DOCUMENTS

10
(FIVE YEARS 7)

H-INDEX

2
(FIVE YEARS 0)

Author(s):  
Nikitas Rontsis ◽  
Paul Goulart ◽  
Yuji Nakatsukasa

AbstractTenfold improvements in computation speed can be brought to the alternating direction method of multipliers (ADMM) for Semidefinite Programming with virtually no decrease in robustness and provable convergence simply by projecting approximately to the Semidefinite cone. Instead of computing the projections via “exact” eigendecompositions that scale cubically with the matrix size and cannot be warm-started, we suggest using state-of-the-art factorization-free, approximate eigensolvers, thus achieving almost quadratic scaling and the crucial ability of warm-starting. Using a recent result from Goulart et al. (Linear Algebra Appl 594:177–192, 2020. https://doi.org/10.1016/j.laa.2020.02.014), we are able to circumvent the numerical instability of the eigendecomposition and thus maintain tight control on the projection accuracy. This in turn guarantees convergence, either to a solution or a certificate of infeasibility, of the ADMM algorithm. To achieve this, we extend recent results from Banjac et al. (J Optim Theory Appl 183(2):490–519, 2019. https://doi.org/10.1007/s10957-019-01575-y) to prove that reliable infeasibility detection can be performed with ADMM even in the presence of approximation errors. In all of the considered problems of SDPLIB that “exact” ADMM can solve in a few thousand iterations, our approach brings a significant, up to 20x, speedup without a noticeable increase in ADMM’s iterations.


2021 ◽  
Author(s):  
Annabella Astorino ◽  
Massimo Di Francesco ◽  
Manlio Gaudioso ◽  
Enrico Gorgone ◽  
Benedetto Manca

AbstractWe consider polyhedral separation of sets as a possible tool in supervised classification. In particular, we focus on the optimization model introduced by Astorino and Gaudioso (J Optim Theory Appl 112(2):265–293, 2002) and adopt its reformulation in difference of convex (DC) form. We tackle the problem by adapting the algorithm for DC programming known as DCA. We present the results of the implementation of DCA on a number of benchmark classification datasets.


Author(s):  
Goran Banjac ◽  
John Lygeros

AbstractBanjac et al. (J Optim Theory Appl 183(2):490–519, 2019) recently showed that the Douglas–Rachford algorithm provides certificates of infeasibility for a class of convex optimization problems. In particular, they showed that the difference between consecutive iterates generated by the algorithm converges to certificates of primal and dual strong infeasibility. Their result was shown in a finite-dimensional Euclidean setting and for a particular structure of the constraint set. In this paper, we extend the result to real Hilbert spaces and a general nonempty closed convex set. Moreover, we show that the proximal-point algorithm applied to the set of optimality conditions of the problem generates similar infeasibility certificates.


Author(s):  
Jitendra Maurya ◽  
Shashi Mishra

In this paper, we establish strong complementary approximate Karush- Kuhn-Tucker (SCAKKT) sequential optimality conditions for multiobjective optimization problems with equality and inequality constraints without any constraint qualifications and introduce a weak constraint qualification which assures the equivalence between SCAKKT and the strong Karush-Kuhn-Tucker (J Optim Theory Appl 80 (3): 483{500, 1994) conditions for multiobjective optimization problems.


2019 ◽  
Vol 52 (1) ◽  
pp. 274-282
Author(s):  
Behzad Djafari Rouhani ◽  
Mohsen Rahimi Piranfar

AbstractWe consider the following second order evolution equation modelling a nonlinear oscillator with damping$$\ddot{u} (t) + \gamma \dot u(t) + Au\left( t \right) = f\left( t \right),\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {{\rm{SEE}}} \right)$$where A is a maximal monotone and α-inverse strongly monotone operator in a real Hilbert space H. With suitable assumptions on γ and f(t) we show that A−1(0) ≠ ∅, if and only if (SEE) has a bounded solution and in this case we provide approximation results for elements of A−1(0) by proving weak and strong convergence theorems for solutions to (SEE) showing that the limit belongs to A−1(0). As a discrete version of (SEE), we consider the following second order difference equation$${u_{n + 1}} - {u_n} - {\alpha _n}\left( {{u_n} - {u_{n - 1}}} \right) + {\lambda _n}A{u_{n + 1}\ni} f\left( t \right),$$where A is assumed to be only maximal monotone (possibly multivalued). By using the results in [Djafari Rouhani B., Khatibzadeh H., On the proximal point algorithm, J. Optim. Theory Appl., 2008, 137, 411–417], we prove ergodic, weak and strong convergence theorems for the sequence un, and show that the limit is the asymptotic center of un and belongs to A−1(0). This again shows that A−1(0) ≠ ∅ if and only if un is bounded. Also these results solve an open problem raised in [Alvarez F., Attouch H., An inertial proximal method for maximal monotone operators via dicretization of a nonlinear oscillator with damping, Set Valued Anal., 2001, 9, 3–11], namely the study of the convergence results for the inexact inertial proximal algorithm. Our paper is motivated by the previous results in [Djafari Rouhani B., Asymptotic behaviour of quasi-autonomous dissipative systems in Hilbert spaces, J. Math. Anal. Appl., 1990, 147, 465–476; Djafari Rouhani B., Asymptotic behaviour of almost nonexpansive sequences in a Hilbert space, J. Math. Anal. Appl., 1990, 151, 226–235; Djafari Rouhani B., Khatibzadeh H., Asymptotic behavior of bounded solutions to some second order evolution systems, Rocky Mountain J. Math., 2010, 40, 1289–1311; Djafari Rouhani B., Khatibzadeh H., A strong convergence theorem for solutions to a nonhomogeneous second order evolution equation, J. Math. Anal. Appl., 2010, 363, 648–654; Djafari Rouhani B., Khatibzadeh H., Asymptotic behavior of bounded solutions to a class of second order nonhomogeneous evolution equations, Nonlinear Anal., 2009, 70, 4369–4376; Djafari Rouhani B., Khatibzadeh H., On the proximal point algorithm, J. Optim. Theory Appl., 2008, 137, 411–417] and significantly improves upon the results of [Attouch H., Maingé P. E., Asymptotic behavior of second-order dissipative evolution equations combining potential with non-potential effects, ESAIM Control Optim. Calc. Var., 2011, 17(3), 836–857], and [Alvarez F., Attouch H., An inertial proximal method for maximal monotone operators via dicretization of a nonlinear oscillator with damping, Set Valued Anal., 2001, 9, 3–11].


2019 ◽  
Vol 35 (3) ◽  
pp. 281-291
Author(s):  
MIRCEA BALAJ ◽  

In this paper, we obtain three intersection theorems that can be considered versions of Theorem 3.1 from the paper [Agarwal, R. P., Balaj, M. and O’Regan, D., Intersection theorems with applications in optimization, J. Optim. Theory Appl., 179 (2018), 761–777]. As will be seen, there are two major differences between the hypotheses of the above mentioned theorem and those of our results. Applications of the main results are considered in the last two sections of the paper.


2018 ◽  
Vol 52 (1) ◽  
pp. 159-176 ◽  
Author(s):  
E.A. Papa Quiroz ◽  
L. Mallma Ramirez ◽  
P.R. Oliveira

In this paper we introduce an inexact proximal point algorithm using proximal distances for solving variational inequality problems when the mapping is pseudomonotone or quasimonotone. Under some natural assumptions we prove that the sequence generated by the algorithm is convergent for the pseudomonotone case and assuming an extra condition on the solution set we prove the convergence for the quasimonotone case. This approach unifies the results obtained by Auslender et al. [Math Oper. Res. 24 (1999) 644–688] and Brito et al. [J. Optim. Theory Appl. 154 (2012) 217–234] and extends the convergence properties for the class of φ-divergence distances and Bregman distances.


Filomat ◽  
2016 ◽  
Vol 30 (5) ◽  
pp. 1339-1351 ◽  
Author(s):  
V. Parvaneh ◽  
H. Hosseinzadeh ◽  
N. Hussain ◽  
Lj. Ciric

In this paper we introduce new notions of hybrid rational Geraghty and Suzuki-Edelstein type contractive mappings and investigate the existence and uniqueness of PPF dependent fixed point for such mappings in the Razumikhin class, where domain and range of the mappings are not the same. As an application of our PPF dependent fixed point results, we deduce corresponding PPF dependent coincidence point results in the Razumikhin class. Our results extend and improve the results of Sintunavarat and Kumam [J. Nonlinear Anal. Optim.: Theory Appl., Vol. 4, (2013), 157-162], Bernfeld, Lakshmikantham and Reddy [Applicable Anal., 6(1977), 271-280] and others. As an application of our results, we establish PPF dependent solution of a periodic boundary value problem.


2011 ◽  
Vol 9 (70) ◽  
pp. 869-879 ◽  
Author(s):  
Steve Alpern ◽  
Robbert Fokkink ◽  
Thomas Lidbetter ◽  
Nicola S. Clayton

Scatter hoarders are animals (e.g. squirrels) who cache food (nuts) over a number of sites for later collection. A certain minimum amount of food must be recovered, possibly after pilfering by another animal, in order to survive the winter. An optimal caching strategy is one that maximizes the survival probability, given worst case behaviour of the pilferer. We modify certain ‘accumulation games’ studied by Kikuta & Ruckle (2000 J. Optim. Theory Appl. ) and Kikuta & Ruckle (2001 Naval Res. Logist. ), which modelled the problem of optimal diversification of resources against catastrophic loss, to include the depth at which the food is hidden at each caching site. Optimal caching strategies can then be determined as equilibria in a new ‘caching game’. We show how the distribution of food over sites and the site-depths of the optimal caching varies with the animal's survival requirements and the amount of pilfering. We show that in some cases, ‘decoy nuts’ are required to be placed above other nuts that are buried further down at the same site. Methods from the field of search games are used. Some empirically observed behaviour can be shown to be optimal in our model.


Sign in / Sign up

Export Citation Format

Share Document