inverse strongly monotone
Recently Published Documents


TOTAL DOCUMENTS

54
(FIVE YEARS 3)

H-INDEX

6
(FIVE YEARS 0)

2021 ◽  
Vol 6 (8) ◽  
pp. 9000-9019
Author(s):  
Hasanen A. Hammad ◽  
◽  
Habib ur Rehman ◽  
Manuel De la Sen ◽  
◽  
...  


Axioms ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 143
Author(s):  
Kazeem Olalekan Aremu ◽  
Chinedu Izuchukwu ◽  
Hammed Anuolwupo Abass ◽  
Oluwatosin Temitope Mewomo

In this paper, we propose and study an iterative algorithm that comprises of a finite family of inverse strongly monotone mappings and a finite family of Lipschitz demicontractive mappings in an Hadamard space. We establish that the proposed algorithm converges strongly to a common solution of a finite family of variational inequality problems, which is also a common fixed point of the demicontractive mappings. Furthermore, we provide a numerical experiment to demonstrate the applicability of our results. Our results generalize some recent results in literature.



2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Getahun Bekele Wega ◽  
Habtu Zegeye

Our purpose of this study is to construct an algorithm for finding a zero of the sum of two maximally monotone mappings in Hilbert spaces and discus its convergence. The assumption that one of the mappings is α-inverse strongly monotone is dispensed with. In addition, we give some applications to the minimization problem. Our method of proof is of independent interest. Finally, a numerical example which supports our main result is presented. Our theorems improve and unify most of the results that have been proved for this important class of nonlinear mappings.



2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Mathew Aibinu ◽  
Surendra Thakur ◽  
Sibusiso Moyo

Finding the solutions of nonlinear operator equations has been a subject of research for decades but has recently attracted much attention. This paper studies the convergence of a newly introduced viscosity implicit iterative algorithm to a fixed point of a nonexpansive mapping in Banach spaces. Our technique is indispensable in terms of explicitly clarifying the associated concepts and analysis. The scheme is effective for obtaining the solutions of various nonlinear operator equations as it involves the generalized contraction. The results are applied to obtain a fixed point of λ-strictly pseudocontractive mappings, solution of α-inverse-strongly monotone mappings, and solution of integral equations of Fredholm type.





2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
F. U. Ogbuisi ◽  
L. O. Jolaoso ◽  
F. O. Isiogugu

In this paper, we introduce an iterative method for approximating a common solution of monotone inclusion problem and fixed point of Bregman nonspreading mappings in a reflexive Banach space. Using the Bregman distance function, we study the composition of the resolvent of a maximal monotone operator and the antiresolvent of a Bregman inverse strongly monotone operator and introduce a Halpern-type iteration for approximating a common zero of a maximal monotone operator and a Bregman inverse strongly monotone operator which is also a fixed point of a Bregman nonspreading mapping. We further state and prove a strong convergence result using the iterative algorithm introduced. This result extends many works on finding a common solution of the monotone inclusion problem and fixed-point problem for nonlinear mappings in a real Hilbert space to a reflexive Banach space.



Mathematics ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 215
Author(s):  
Ming Tian ◽  
Meng-Ying Tong

In this paper, based on the Yamada iteration, we propose an iteration algorithm to find a common element of the set of fixed points of a nonexpansive mapping and the set of zeros of an inverse strongly-monotone mapping. We obtain a weak convergence theorem in Hilbert space. In particular, the set of zero points of an inverse strongly-monotone mapping can be transformed into the solution set of the variational inequality problem. Further, based on this result, we also obtain some new weak convergence theorems which are used to solve the equilibrium problem and the split feasibility problem.



Filomat ◽  
2019 ◽  
Vol 33 (6) ◽  
pp. 1727-1746 ◽  
Author(s):  
D.R. Sahu ◽  
Ajeet Kumar ◽  
Ching-Feng Wen

This paper is devoted to the strong convergence of the S-iteration process of Halpern-type for approximating a common element of the set of fixed points of a nonexpansive mapping and the set of common solutions of variational inequality problems formed by two inverse strongly monotone mappings in the framework of Hilbert spaces. We also give some numerical examples in support of our main result.



Sign in / Sign up

Export Citation Format

Share Document