The Role of Cyclooxygenase and Lipoxygenase in Cancer Chemoprevention

Author(s):  
M. Cuendet ◽  
M. Pezzuto
F1000Research ◽  
2015 ◽  
Vol 4 ◽  
pp. 916 ◽  
Author(s):  
Vassiliki Benetou ◽  
Areti Lagiou ◽  
Pagona Lagiou

Cancer chemoprevention refers to the use of agents for the inhibition, delay, or reversal of carcinogenesis before invasion. In the present review, agents examined in the context of cancer chemoprevention are classified in four major categories—hormonal, medications, diet-related agents, and vaccines—and the main representatives of each category are presented. Although there are serious constraints in the documentation of effectiveness of chemopreventive agents, mainly stemming from the long latency of the condition they are addressing and the frequent lack of intermediate biomarkers, there is little disagreement about the role of aspirin, whereas a diet rich in vegetables and fruits appears to convey more protection than individual micronutrients. Among categories of cancer chemopreventive agents, hormonal ones and vaccines might hold more promise for the future. Also, the identification of individuals who would benefit most from chemopreventive interventions on the basis of their genetic profiles could open new prospects for cancer chemoprevention.


Tumor Biology ◽  
2017 ◽  
Vol 39 (2) ◽  
pp. 101042831769119 ◽  
Author(s):  
Gabriela Velasco-Loyden ◽  
Lidia Pérez-Martínez ◽  
Susana Vidrio-Gómez ◽  
Julio Isael Pérez-Carreón ◽  
Victoria Chagoya de Sánchez

Hepatocellular carcinoma is one of the most common cancers, and approximately 80% develop from cirrhotic livers. We have previously shown that the aspartate salt of adenosine prevents and reverses carbon tetrachloride–induced liver fibrosis in rats. Considering the hepatoprotective role of this adenosine derivative in fibrogenesis, we were interested in evaluating its effect in a hepatocarcinogenesis model induced by diethylnitrosamine in rats, where multinodular cancer is preceded by cirrhosis. Rats were injected with diethylnitrosamine for 12 weeks to induce cirrhosis and for 16 weeks to induce hepatocarcinogenesis. Groups of rats were treated with aspartate salt of adenosine from the beginning of carcinogen administration for 12 or 18 weeks total, and another group received the compound from weeks 12 to 18. Fibrogenesis was estimated and the proportion of preneoplastic nodules and tumors was measured. The apoptotic and proliferation rates in liver tissues were evaluated, as well as the expression of cell signaling and cell cycle proteins participating in hepatocarcinogenesis. The adenosine derivative treatment reduced diethylnitrosamine-induced collagen expression and decreased the proportion of nodules positive for the tumor marker γ-glutamyl transferase. This compound down-regulated the expression of thymidylate synthase and hepatocyte growth factor, and augmented the protein level of the cell cycle inhibitor p27; these effects could be part of its chemopreventive mechanism. These findings suggest a hepatoprotective role of aspartate salt of adenosine that could be used as a therapeutic compound in the prevention of liver tumorigenesis as described earlier for hepatic fibrosis.


Sign in / Sign up

Export Citation Format

Share Document