Transmuted Erlang-Truncated Exponential Distribution

2016 ◽  
Vol 31 (2) ◽  
Author(s):  
Idika E. Okorie ◽  
Anthony C. Akpanta ◽  
Johnson Ohakwe

AbstractThis article introduces a new lifetime distribution called the transmuted Erlang-truncated exponential (TETE) distribution. This new distribution generalizes the two parameter Erlang-truncated exponential (ETE) distribution. Closed form expressions for some of its distributional and reliability properties are provided. The method of maximum likelihood estimation was proposed for estimating the parameters of the TETE distribution. The hazard rate function of the TETE distribution can be constant, increasing or decreasing depending on the value of the transmutation parameter

2020 ◽  
Vol 9 (2) ◽  
pp. 288-310
Author(s):  
Fazlollah Lak ◽  
Morad Alizadeh ◽  
Hamid Karamikabir

In this article, the Topp-Leone odd log-logistic Gumbel (TLOLL-Gumbel) family of distribution have beenstudied. This family, contains the very flexible skewed density function. We study many aspects of the new model like hazard rate function, asymptotics, useful expansions, moments, generating Function, R´enyi entropy and order statistics. We discuss maximum likelihood estimation of the model parameters. Further, we study flexibility of the proposed family are illustrated of two real data sets.


Author(s):  
Innocent Boyle Eraikhuemen ◽  
Terna Godfrey Ieren ◽  
Tajan Mashingil Mabur ◽  
Mohammed Sa’ad ◽  
Samson Kuje ◽  
...  

The article presents an extension of the Gompertz-Makeham distribution using the Lomax generator of probability distributions. This generalization of the Gompertz-Makeham distribution provides a more skewed and flexible compound model called Lomax Gompertz-Makeham distribution. The paper derives and discusses some Mathematical and Statistical properties of the new distribution. The unknown parameters of the new model are estimated via the method of maximum likelihood estimation. In conclusion, the new distribution is applied to two real life datasets together with two other related models to check its flexibility or performance and the results indicate that the proposed extension is more flexible compared to the other two distributions considered in the paper based on the two datasets used.


Mathematics ◽  
2021 ◽  
Vol 9 (23) ◽  
pp. 3113
Author(s):  
Muhammed Rasheed Irshad ◽  
Christophe Chesneau ◽  
Soman Latha Nitin ◽  
Damodaran Santhamani Shibu ◽  
Radhakumari Maya

Many studies have underlined the importance of the log-normal distribution in the modeling of phenomena occurring in biology. With this in mind, in this article we offer a new and motivated transformed version of the log-normal distribution, primarily for use with biological data. The hazard rate function, quantile function, and several other significant aspects of the new distribution are investigated. In particular, we show that the hazard rate function has increasing, decreasing, bathtub, and upside-down bathtub shapes. The maximum likelihood and Bayesian techniques are both used to estimate unknown parameters. Based on the proposed distribution, we also present a parametric regression model and a Bayesian regression approach. As an assessment of the longstanding performance, simulation studies based on maximum likelihood and Bayesian techniques of estimation procedures are also conducted. Two real datasets are used to demonstrate the applicability of the new distribution. The efficiency of the third parameter in the new model is tested by utilizing the likelihood ratio test. Furthermore, the parametric bootstrap approach is used to determine the effectiveness of the suggested model for the datasets.


Author(s):  
Emmanuel W. Okereke ◽  
Johnson Ohakwe

AbstractIn this paper, we defined and studied a new distribution called the odd exponentiated half-logistic Burr III distribution. Properties such as the linear representation of the probability density function (PDF) of the distribution, quantile function, ordinary and incomplete moments, moment generating function and distribution of the order statistic were derived. The PDF and hazard rate function were found to be capable of having various shapes, making the new distribution highly flexible. In particular, the hazard rate function can be nonincreasing, unimodal and nondecreasing. It can also have the bathtub shape among other non- monotone shapes. The maximum likelihood procedure was used to estimate the parameters of the new model. We gave two numerical examples to illustrate the usefulness and the ability of the distribution to provide better fits to a number of data sets than several distributions in existence.Keywords: Burr III distribution; maximum likelihood procedure; moments; odd exponentiated half-logistic-G family; order statistics. AbstrakPada artikel ini akan didefinisikan dan dipelajari mengenai distribusi baru yang disebut distribusi Burr III setengah logistik tereksponen ganjil. Kami menurunkan beberapa sifat dari distribusi tersebut yaitu representasi linier dari fungsi kepadatan peluang (FKP), fungsi kuantil, momen biasa dan momen tidak lengkap, fungsi pembangkit momen dan distribusi statistik terurut. Fungsi FKP dan fungsi tingkat hazard diperoleh memiliki bermacam-macam bentuk, membuat distribusi baru ini sangat fleksibel. Secara khusus, fungsi tingkat hazard dapat berupa fungsi taknaik, bermodus tunggal, bisa juga tidak turun. Selain itu, fungsi ini juga dapat berbentuk seperti bak mandi di antara bentuk-bentuk tak monoton lainnya. Prosedur kemungkinan maksimum digunakan untuk mengestimasi parameter model yang baru. Kami memberikan dua contoh numerik untuk mengilustrasikan kegunaan dan kemampuan distribusi untuk menghasilkan kesesuaian yang lebih baik pada sejumlah kumpulan data dibandingkan beberapa distribusi yang ada.Kata kunci: distribusi Burr III; prosedur kemungkinan maksimum; momen; keluarga setengah logistik-G teresponen ganjil; statistic terurut.


Author(s):  
Aliyeh Toumaj ◽  
S.M.T.K. MirMostafaee ◽  
G.G. Hamedani

In this paper, we propose a new lifetime distribution. We discuss several mathematical properties of the new distribu- tion. Certain characterizations of the new distribution are provided. We study the maximum likelihood estimation and asymptotic interval estimation of the unknown parameters. A simulation study, as well as an application of the new distribution to failure data, are also presented. We end the paper with a number of remarks.


In this article, we have introduced a new distribution based on type I half logistic-G family and exponential extension as a base distribution known as Half Logistic Exponential Extension (HLEE) distribution. The statistical properties of this model are also explored, such as the behavior of probability density, hazard rate, and quantile functions are investigated. The Maximum likelihood estimation (MLE) method is used to estimate model parameters. For the potentiality of the proposed model we have compared the goodness of fit with some others models. We have proven the importance and flexibility of the new distribution in modeling with real data applications empirically.


2004 ◽  
Vol 2004 (4) ◽  
pp. 323-332 ◽  
Author(s):  
Saralees Nadarajah ◽  
Samuel Kotz

The Gumbel distribution is perhaps the most widely applied statistical distribution for problems in engineering. In this paper, we introduce a generalization—referred to as the beta Gumbel distribution—generated from the logit of a beta random variable. We provide a comprehensive treatment of the mathematical properties of this new distribution. We derive the analytical shapes of the corresponding probability density function and the hazard rate function and provide graphical illustrations. We calculate expressions for thenth moment and the asymptotic distribution of the extreme order statistics. We investigate the variation of the skewness and kurtosis measures. We also discuss estimation by the method of maximum likelihood. We hope that this generalization will attract wider applicability in engineering.


2020 ◽  
Vol 9 (1) ◽  
pp. 100-108
Author(s):  
Laxmi Prasad Sapkota

This study proposes new distribution which is generated from exponentiated-exponential-X family of distribution. It is explored various shape and behavior of the observed distribution through probability density plot, hazard rate function and quantile function. Further we have investigated some mathematical properties, estimation of the parameters and associated confidence interval using maximum likelihood estimation (MLE) method of the exponentiatedexponential-logistic distribution (EELD).


Mathematics ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 1002 ◽  
Author(s):  
Ramadan A. ZeinEldin ◽  
Christophe Chesneau ◽  
Farrukh Jamal ◽  
Mohammed Elgarhy

In this paper, we introduce and study a new three-parameter lifetime distribution constructed from the so-called type I half-logistic-G family and the inverted Kumaraswamy distribution, naturally called the type I half-logistic inverted Kumaraswamy distribution. The main feature of this new distribution is to add a new tuning parameter to the inverted Kumaraswamy (according to the type I half-logistic structure), with the aim to increase the flexibility of the related inverted Kumaraswamy model and thus offering more precise diagnostics in data analyses. The new distribution is discussed in detail, exhibiting various mathematical and statistical properties, with related graphics and numerical results. An exhaustive simulation was conducted to investigate the estimation of the model parameters via several well-established methods, including the method of maximum likelihood estimation, methods of least squares and weighted least squares estimation, and method of Cramer-von Mises minimum distance estimation, showing their numerical efficiency. Finally, by considering the method of maximum likelihood estimation, we apply the new model to fit two practical data sets. In this regards, it is proved to be better than recent models, also derived to the inverted Kumaraswamy distribution.


Sign in / Sign up

Export Citation Format

Share Document