Green’s functions, positive solutions, and a Lyapunov inequality for a caputo fractional-derivative boundary value problem

2019 ◽  
Vol 22 (3) ◽  
pp. 750-766 ◽  
Author(s):  
Xiangyun Meng ◽  
Martin Stynes

Abstract We consider a nonlinear boundary problem whose highest-order derivative is a Caputo derivative of order α with 1 < α < 2. Properties of its associated Green’s function are derived. These properties enable us to deduce sufficient conditions for the existence of a positive solution to the boundary value problem and to prove a Lyapunov inequality for the problem. Our results sharpen and extend earlier results of other authors.

2014 ◽  
Vol 2014 ◽  
pp. 1-12
Author(s):  
Yansheng He ◽  
Mingzhe Sun ◽  
Chengmin Hou

We consider a discrete fractional nonlinear boundary value problem in which nonlinear termfis involved with the fractional order difference. And we transform the fractional boundary value problem into boundary value problem of integer order difference equation. By using a generalization of Leggett-Williams fixed-point theorem due to Avery and Peterson, we provide sufficient conditions for the existence of at least three positive solutions.


2015 ◽  
Vol 15 (1) ◽  
pp. 79-95 ◽  
Author(s):  
Martin Stynes ◽  
José Luis Gracia

AbstractA two-point boundary value problem is considered on the interval $[0,1]$, where the leading term in the differential operator is a Caputo fractional derivative of order δ with $1&lt;\delta &lt;2$. Writing u for the solution of the problem, it is known that typically $u^{\prime \prime }(x)$ blows up as $x\rightarrow 0$. A numerical example demonstrates the possibility of a further phenomenon that imposes difficulties on numerical methods: u may exhibit a boundary layer at x = 1 when δ is near 1. The conditions on the data of the problem under which this layer appears are investigated by first solving the constant-coefficient case using Laplace transforms, determining precisely when a layer is present in this special case, then using this information to enlighten our examination of the general variable-coefficient case (in particular, in the construction of a barrier function for u). This analysis proves that usually no boundary layer can occur in the solution u at x = 0, and that the quantity $M = \max _{x\in [0,1]}b(x)$, where b is the coefficient of the first-order term in the differential operator, is critical: when $M&lt;1$, no boundary layer is present when δ is near 1, but when M ≥ 1 then a boundary layer at x = 1 is possible. Numerical results illustrate the sharpness of most of our results.


The study of the differential-algebraic boundary value problems was established in the papers of K. Weierstrass, M.M. Lusin and F.R. Gantmacher. Works of S. Campbell, Yu.E. Boyarintsev, V.F. Chistyakov, A.M. Samoilenko, M.O. Perestyuk, V.P. Yakovets, O.A. Boichuk, A. Ilchmann and T. Reis are devoted to the systematic study of differential-algebraic boundary value problems. At the same time, the study of differential-algebraic boundary-value problems is closely related to the study of nonlinear boundary-value problems for ordinary differential equations, initiated in the works of A. Poincare, A.M. Lyapunov, M.M. Krylov, N.N. Bogolyubov, I.G. Malkin, A.D. Myshkis, E.A. Grebenikov, Yu.A. Ryabov, Yu.A. Mitropolsky, I.T. Kiguradze, A.M. Samoilenko, M.O. Perestyuk and O.A. Boichuk. The study of the nonlinear differential-algebraic boundary value problems is connected with numerous applications of corresponding mathematical models in the theory of nonlinear oscillations, mechanics, biology, radio engineering, the theory of the motion stability. Thus, the actual problem is the transfer of the results obtained in the articles and monographs of S. Campbell, A.M. Samoilenko and O.A. Boichuk on the nonlinear boundary value problems for the differential algebraic equations, in particular, finding the necessary and sufficient conditions of the existence of the desired solutions of the nonlinear differential algebraic boundary value problems. In this article we found the conditions of the existence and constructed the iterative scheme for finding the solutions of the weakly nonlinear Noetherian differential-algebraic boundary value problem. The proposed scheme of the research of the nonlinear differential-algebraic boundary value problems in the article can be transferred to the nonlinear matrix differential-algebraic boundary value problems. On the other hand, the proposed scheme of the research of the nonlinear Noetherian differential-algebraic boundary value problems in the critical case in this article can be transferred to the autonomous seminonlinear differential-algebraic boundary value problems.


Sign in / Sign up

Export Citation Format

Share Document