Novel Spurious Suppression Approach for SIR Dual-band Bandpass Filter Design

Frequenz ◽  
2014 ◽  
Vol 69 (1-2) ◽  
pp. 65-70
Author(s):  
Jianzhong Chen ◽  
Xuefeng Li ◽  
Hongyu Shi ◽  
Anxue Zhang

Abstract A new design approach for a stepped impedance resonator (SIR) dual-band bandpass filter (BPF) with high multi-spurious suppression is proposed in this paper. The external coupling property of an SIR at multi-order resonant frequencies is fully studied. Different input impedances at desired frequencies are achieved by optimizing the unequal impedance transformer. The new solution shows the freedom in the choice of tapping point. The external quality values of multi-order harmonics vary with the shift of the tapping position. Wide upper stop-band rejection is realized by mismatching Qe at the unwanted harmonic frequencies, while keeping the Qe suitable for operating dual band to obtain good in-band performance. A traditional dual-band BPF and a novel practical BPF operated at 2.45/5.25 GHz are designed and fabricated to demonstrate the above idea. Good simulated and measured results are presented.

2011 ◽  
Vol 53 (7) ◽  
pp. 1505-1511
Author(s):  
Xiao-Hua Wang ◽  
Quan Xue ◽  
Kim Fung Man

2019 ◽  
Vol 4 (7) ◽  
pp. 28-30
Author(s):  
William Johnson ◽  
Cavin Roger Nunes ◽  
Savio Sebastian Dias ◽  
Siddhi Suresh Parab ◽  
Varsha Shantaram Hatkar

In this paper, a dual band microstrip bandpass filter has been proposed utilizing three edge coupled resonators, interdigital stubs and DGS technique. To enhance the coupling degree, two interdigital coupled feed lines are employed in this filter. The suppressing cell consists of stepped impedance ladder type resonators, which provides a wide stopband. The proposed suppressing cell has clear advantages like low insertion loss in the passband and suitable roll off. The frequency response of the filter looks like a standard dual band band-pass filter. The filter exhibits a dual passband with resonant frequencies at 2.2GHz and 3.45GHz covers LTE1 and LTE22 bands.


2021 ◽  
Vol 95 ◽  
pp. 147-153
Author(s):  
Yun Xiu Wang ◽  
Yuan Li Chen ◽  
Wen Hui Zhou ◽  
Wei Chao Yang ◽  
Jin Zen

Frequenz ◽  
2017 ◽  
Vol 71 (11-12) ◽  
Author(s):  
Jin Xu ◽  
Yan Zhu ◽  
Yong-Qian Du

AbstractThis paper presents a compact quad-band bandpass filter (QB-BPF) using double-diplexing structure, which consists of two channel filters and a pair of modified manifold-coupled lines. Each channel filter is realized by the asymmetrical coupling shorted stub loaded stepped-impedance resonator (SSLSIR) dual-band bandpass filter (DB-BPF), and the modified manifold line constructed by lumped elements is proposed to connect two channel filters to constitute the QB-BPF. The fabricated QB-BPF occupies a compact circuit size of 0.178λ


2013 ◽  
Vol 655-657 ◽  
pp. 1614-1618
Author(s):  
Wen Ko ◽  
Man Long Her ◽  
Yu Lin Wang ◽  
Ming Wei Hsu

This paper studies a very simple structure for dual-band bandpass filter. Filter is composed of two asymmetric coupled resonator circuit by two sets of different size stepped impedance resonator. This circuit applied microstrip line, coupling principle and impedance ratio by controlling the stepped impedance resonator to control the center frequency 2.6/5.2 GHz of the first and the second bandpass filter. The basic structure of the filter is constituted by the three sections of transmission line and two sets of SIR, that is, in two gaps of the three sections of transmission line parallel connection the equivalent inductances and capacitor of the two sets of SIR in series with the resonant circuit (LCL) to constitute bandpass filter. The low frequency 2.6 GHz is through the upper half of low impedance SIR, and the high frequency 5.2 GHz is through the lower half of high impedance SIR. This paper presents the design of asymmetric SIR-based dual-band bandpass filter, the filter structure is simple, easy to produce and can control the characteristics of the passband center frequency. By electromagnet simulation software( IE3D ) to simulate, the actual production of the circuit using a vector analyzer measurement, simulation and measurement results show good consistency.


2014 ◽  
Vol 56 (10) ◽  
pp. 2211-2214 ◽  
Author(s):  
Ali Kursad Gorur ◽  
Ceyhun Karpuz ◽  
Ahmet Ozek ◽  
Murat Emur

Sign in / Sign up

Export Citation Format

Share Document