tunable bandpass filter
Recently Published Documents


TOTAL DOCUMENTS

247
(FIVE YEARS 50)

H-INDEX

18
(FIVE YEARS 3)

Electronics ◽  
2021 ◽  
Vol 10 (18) ◽  
pp. 2315
Author(s):  
Mirosław Magnuski ◽  
Dariusz Wójcik ◽  
Maciej Surma ◽  
Artur Noga

This article presents a novel compact widely tunable bandpass filter. The filter consists of two resonators that are double-coupled, inductively, where the coupling inductances are elements of the input and output networks. The application of double-coupling enabled the transmission zero next to the upper cutoff frequency. This makes the filter useful for applications in preselector networks used in receiving systems with a low to intermediate frequency with the desired channel frequency lower than the image channel frequency. The article shows the practical realisation of the varactor-tuned example filter fabricated as a microstrip planar network of an overall size of 0.03λg × 0.045λg. The tuning range of the proposed filter is from 410 MHz to 880 MHz with the fractional bandwidth equal to 7.5–8.1% and an in-band insertion loss better than −3.4 dB. The achieved IP3 value exceeds 17.5 dBm.


Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1318
Author(s):  
Tiejun Du ◽  
Boran Guan ◽  
Pengquan Zhang ◽  
Yue Gu ◽  
Dujuan Wei

In this paper, a novel intrinsically switched tunable bandpass filter based on a dual-mode T-shaped varactor-loaded resonator is presented. The varactors loaded in the T-shaped resonator are capable of efficiently tuning the resonant frequencies of the even and odd modes, as well as the transmission-zero frequency. Without any additional RF switches, the passband of the filter can be intrinsically switched off by adjusting the transmission zero to the resonant frequencies. In the switch-on state, the constant absolute bandwidth (CABW) or constant fractional bandwidth (CFBW) passband can be achieved by controlling the frequency space between the two resonances. For a demonstration, a 0.8–1.1 GHz intrinsically switched tunable bandpass filter with 74 MHz CABW or 8.5% CFBW was fabricated and tested. In the whole operating band with |S11| < 10 dB, the insertion losses for CABW and CFBW are better than 3.3 dB and 3 dB, respectively, and the isolations are better than 20 dB in the switch-off state. The measured results have a good agreement with simulated results, which verifies the design theory.


2021 ◽  
Author(s):  
Liangzu Cao ◽  
Zijing Li ◽  
Di Deng ◽  
Junmei Yan ◽  
Lixia Yin

Sign in / Sign up

Export Citation Format

Share Document