Operator m-convex functions

2018 ◽  
Vol 25 (1) ◽  
pp. 93-107
Author(s):  
Jamal Rooin ◽  
Akram Alikhani ◽  
Mohammad Sal Moslehian

AbstractThe aim of this paper is to present a comprehensive study of operatorm-convex functions. Let{m\in[0,1]}, and{J=[0,b]}for some{b\in\mathbb{R}}or{J=[0,\infty)}. A continuous function{\varphi\colon J\to\mathbb{R}}is called operatorm-convex if for any{t\in[0,1]}and any self-adjoint operators{A,B\in\mathbb{B}({\mathscr{H}})}, whose spectra are contained inJ, we have{\varphi(tA+m(1-t)B)\leq t\varphi(A)+m(1-t)\varphi(B)}. We first generalize the celebrated Jensen inequality for continuousm-convex functions and Hilbert space operators and then use suitable weight functions to give some weighted refinements. Introducing the notion of operatorm-convexity, we extend the Choi–Davis–Jensen inequality for operatorm-convex functions. We also present an operator version of the Jensen–Mercer inequality form-convex functions and generalize this inequality for operatorm-convex functions involving continuous fields of operators and unital fields of positive linear mappings. Employing the Jensen–Mercer operator inequality for operatorm-convex functions, we construct them-Jensen operator functional and obtain an upper bound for it.

Filomat ◽  
2017 ◽  
Vol 31 (7) ◽  
pp. 1995-2009 ◽  
Author(s):  
Jadranka Micic ◽  
Josip Pecaric

We observe properties of some mappings related to the Davis-Choi-Jensen inequality for Hilbert space operators. Using these results, we observe properties of some mappings related to Levinson?s operator inequality. Consequently, we obtain several refinements for each of these inequalities.


1991 ◽  
Vol 11 (4) ◽  
pp. 779-786 ◽  
Author(s):  
Dan Voiculescu

In the papers [9, 10, 3, 11] on perturbations of Hilbert space operators, we studied an invariant (τ) where is a normed ideal of compact operators and τ a family of operators. The size of an ideal for which (τ) vanishes or does not vanish is an upper, respectively lower, bound for a kind of dimension of τ. In the case of systems of commuting self-adjoint operators τ, the results of [9,3] relate (τ) with (an ideal slightly smaller than the Schatten von Neumann class ) to the way the spectral measure of τ compares to p-dimensional Hausdorff measure.


1981 ◽  
Vol 24 (3) ◽  
pp. 279-282
Author(s):  
G. Klambauer

We shall apply the spectral theorem for self adjoint operators in Hilbert space to study an operator version of the Stieltjes moment problem [1]. In the course of the work we shall make use of the Friedrichs extension theorem which states that any non-negative symmetric operator in Hilbert space has a non-negative self adjoint extension.


Filomat ◽  
2012 ◽  
Vol 26 (4) ◽  
pp. 827-832
Author(s):  
Maryam Khosravi ◽  
Roman Drnovsek ◽  
Mohammad Moslehian

Using a 2?2 matrix trick, an inequality involving commutators of certain Hilbert space operators as an operator version of Buzano?s inequality, which is in turn a generalization of the Cauchy-Schwarz inequality, is presented. Also a version of the inequality in the framework of Hilbert C*-modules is stated and a special case in the context of C*-algebras is presented.


2021 ◽  
Vol 45 (02) ◽  
pp. 191-202
Author(s):  
Z. HEYDARBEYGI ◽  
M. AMYARI

In this paper, we get an improvement of the Hölder-McCarthy operator inequality in the case when r ≥ 1 and refine generalized inequalities involving powers of the numerical radius for sums and products of Hilbert space operators.


Filomat ◽  
2020 ◽  
Vol 34 (13) ◽  
pp. 4555-4566
Author(s):  
Ismail Nikoufar ◽  
Davuod Saeedi

In this paper, we provide some inequalities for P-class functions and self-adjoint operators on a Hilbert space including an operator version of the Jensen?s inequality and the Hermite-Hadamard?s type inequality. We improve the H?lder-MacCarthy inequality by providing an upper bound. Some refinements of the Jensen type inequality for P-class functions will be of interest.


2020 ◽  
Vol 53 (1) ◽  
pp. 249-268
Author(s):  
Bhagwati Prashad Duggal ◽  
In Hyun Kim

AbstractGiven Hilbert space operators T,S\in B( {\mathcal H} ), let \text{Δ} and \delta \in B(B( {\mathcal H} )) denote the elementary operators {\text{Δ}}_{T,S}(X)=({L}_{T}{R}_{S}-I)(X)=TXS-X and {\delta }_{T,S}(X)=({L}_{T}-{R}_{S})(X)=TX-XS. Let d=\text{Δ} or \delta . Assuming T commutes with {S}^{\ast }, and choosing X to be the positive operator {S}^{\ast n}{S}^{n} for some positive integer n, this paper exploits properties of elementary operators to study the structure of n-quasi {[}m,d]-operators {d}_{T,S}^{m}(X)=0 to bring together, and improve upon, extant results for a number of classes of operators, such as n-quasi left m-invertible operators, n-quasi m-isometric operators, n-quasi m-self-adjoint operators and n-quasi (m,C) symmetric operators (for some conjugation C of {\mathcal H} ). It is proved that {S}^{n} is the perturbation by a nilpotent of the direct sum of an operator {S}_{1}^{n}={\left(S{|}_{\overline{{S}^{n}( {\mathcal H} )}}\right)}^{n} satisfying {d}_{{T}_{1},{S}_{1}}^{m}({I}_{1})=0, {{T}_{1}=T}_{\overline{{S}^{n}( {\mathcal H} )}}, with the 0 operator; if S is also left invertible, then {S}^{n} is similar to an operator B such that {d}_{{B}^{\ast },B}^{m}(I)=0. For power bounded S and T such that S{T}^{\ast }-{T}^{\ast }S=0 and {\text{Δ}}_{T,S}({S}^{\ast n}{S}^{n})=0, S is polaroid (i.e., isolated points of the spectrum are poles). The product property, and the perturbation by a commuting nilpotent property, of operators T,S satisfying {d}_{T,S}^{m}(I)=0, given certain commutativity properties, transfers to operators satisfying {S}^{\ast n}{d}_{T,S}^{m}(I){S}^{n}=0.


Author(s):  
Mohammad Alomari

In this work, some operator trace inequalities are proved. An extension of Klein's inequality for all Hermitian matrices is proved. A non-commutative version (or Hansen-Pedersen version) of the Jensen trace inequality is provided as well. A generalization of the result for any positive Hilbert space operators acts on a positive unital linear map is established.


Sign in / Sign up

Export Citation Format

Share Document