Positive periodic solutions to the forced non-autonomous Duffing equations

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Jiří Šremr

Abstract We study the existence and multiplicity of positive solutions to the periodic problem for a forced non-autonomous Duffing equation u ′′ = p ⁢ ( t ) ⁢ u - h ⁢ ( t ) ⁢ | u | λ ⁢ sgn ⁡ u + f ⁢ ( t ) ; u ⁢ ( 0 ) = u ⁢ ( ω ) , u ′ ⁢ ( 0 ) = u ′ ⁢ ( ω ) , u^{\prime\prime}=p(t)u-h(t)\lvert u\rvert^{\lambda}\operatorname{sgn}u+f(t);\quad u(0)=u(\omega),\ u^{\prime}(0)=u^{\prime}(\omega), where p , h , f ∈ L ⁢ ( [ 0 , ω ] ) p,h,f\in L([0,\omega]) and λ > 1 \lambda>1 . The obtained results are compared with the results known for the equations with constant coefficients.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Jiří Šremr

Abstract We study the existence and multiplicity of positive solutions to the periodic problem u ′′ = p ⁢ ( t ) ⁢ u - q ⁢ ( t , u ) ⁢ u + f ⁢ ( t ) ; u ⁢ ( 0 ) = u ⁢ ( ω ) , u ′ ⁢ ( 0 ) = u ′ ⁢ ( ω ) , u^{\prime\prime}=p(t)u-q(t,u)u+f(t);\quad u(0)=u(\omega),\quad u^{\prime}(0)=u^{\prime}(\omega), where p , f ∈ L ⁢ ( [ 0 , ω ] ) p,f\in L([0,\omega]) and q : [ 0 , ω ] × R → R q\colon[0,\omega]\times\mathbb{R}\to\mathbb{R} is a Carathéodory function. By using the method of lower and upper functions, we show some properties of the solution set of the considered problem and, in particular, the existence of a minimal positive solution.


Symmetry ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 107
Author(s):  
Daliang Zhao ◽  
Juan Mao

In this paper, sufficient conditions ensuring existence and multiplicity of positive solutions for a class of nonlinear singular fractional differential systems are derived with Riemann–Stieltjes coupled integral boundary value conditions in Banach Spaces. Nonlinear functions f(t,u,v) and g(t,u,v) in the considered systems are allowed to be singular at every variable. The boundary conditions here are coupled forms with Riemann–Stieltjes integrals. In order to overcome the difficulties arising from the singularity, a suitable cone is constructed through the properties of Green’s functions associated with the systems. The main tool used in the present paper is the fixed point theorem on cone. Lastly, an example is offered to show the effectiveness of our obtained new results.


Author(s):  
Ching-yu Chen ◽  
Yueh-cheng Kuo ◽  
Tsung-fang Wu

We study the existence and multiplicity of positive solutions for the following nonlinear Schrödinger–Poisson equations: where 2 < p ≤ 3 or 4 ≤ p < 6, λ > 0 and Q ∈ C(ℝ3). We show that the number of positive solutions is dependent on the profile of Q(x).


Sign in / Sign up

Export Citation Format

Share Document