duffing equations
Recently Published Documents


TOTAL DOCUMENTS

108
(FIVE YEARS 16)

H-INDEX

17
(FIVE YEARS 2)

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Jiří Šremr

Abstract We study the existence and multiplicity of positive solutions to the periodic problem for a forced non-autonomous Duffing equation u ′′ = p ⁢ ( t ) ⁢ u - h ⁢ ( t ) ⁢ | u | λ ⁢ sgn ⁡ u + f ⁢ ( t ) ; u ⁢ ( 0 ) = u ⁢ ( ω ) , u ′ ⁢ ( 0 ) = u ′ ⁢ ( ω ) , u^{\prime\prime}=p(t)u-h(t)\lvert u\rvert^{\lambda}\operatorname{sgn}u+f(t);\quad u(0)=u(\omega),\ u^{\prime}(0)=u^{\prime}(\omega), where p , h , f ∈ L ⁢ ( [ 0 , ω ] ) p,h,f\in L([0,\omega]) and λ > 1 \lambda>1 . The obtained results are compared with the results known for the equations with constant coefficients.


2021 ◽  
Vol 13 (6) ◽  
pp. 10
Author(s):  
Chein-Shan Liu

In the paper, we solve two nonlinear problems related to the Duffing equations in space and in time. The first problem is the bifurcation of Duffing equation in space, wherein a critical value of the parameter initiates the bifurcation from a trivial solution to a non-trivial solution. The second problem is an unconventional periodic problem of Duffing equation in time to determine period and periodic solution. To save computational cost and even enhance the accuracy in seeking higher order analytic solutions of these two problems, a modified homotopy perturbation method is invoked after a linearization technique being exerted on the Duffing equation, whose nonlinear cubic term is decomposed at two sides via a weight factor, such that the Duffing equation is linearized as the Mathieu type differential equation. The constant preceding the displacement is expanded in powers of homotopy parameter and the coefficients are determined to avoid secular solutions appeared in the derived sequence of linear differential equations. Consequently, after setting the homotopy parameter equal to unity and solving the amplitude equation, the higher order bifurcated solutions can be derived explicitly. For the second problem, we can determine the period and periodic solution in closed-form, which are very accurate. For the sake of comparison the results obtained from the fourth-order Runge-Kutta numerical method are used to evaluate the presented analytic solutions.


2021 ◽  
Vol 6 (12) ◽  
pp. 14013-14034
Author(s):  
Ridwanulahi Iyanda Abdulganiy ◽  
◽  
Shiping Wen ◽  
Yuming Feng ◽  
Wei Zhang ◽  
...  

<abstract><p>Problems of non-linear equations to model real-life phenomena have a long history in science and engineering. One of the popular of such non-linear equations is the Duffing equation. An adapted block hybrid numerical integrator that is dependent on a fixed frequency and fixed step length is proposed for the integration of Duffing equations. The stability and convergence of the method are demonstrated; its accuracy and efficiency are also established.</p></abstract>


2021 ◽  
Vol 70 (2) ◽  
pp. 024601-024601
Author(s):  
Li Chao-Gang ◽  
◽  
Wang Mao-Sheng ◽  
Fang Quan ◽  
Peng Xue-Cheng ◽  
...  

2020 ◽  
Vol 11 (2) ◽  
Author(s):  
Zoran Rajilić ◽  
Nikola Stupar ◽  
Tatjana Vujičić ◽  
Sreten Lekić

Computational experiments with double pendulum, Tacker’s oscillator and steel beam, described by Duffing equations, are performed. We assume that a fluid drives the oscillator by fluctuating force. The considered complex motion is a combination of deterministic chaos and stochasticity. If amount of the fluctuating force is large enough (the number of fluid particles interacting with the oscillator is then large), oscillator motion becomes ordered. Similar result is obtained in the Lorenz model, when considering a part of the Earth atmosphere interacting with surrounding air.


Sign in / Sign up

Export Citation Format

Share Document