scholarly journals On the Modified Boundary Value Problem of De La Vallée-Poussin for Nonlinear Ordinary Differential Equations

1994 ◽  
Vol 1 (4) ◽  
pp. 429-458
Author(s):  
G. Tskhovrebadze

Abstract The sufficient conditions of the existence, uniqueness, and correctness of the solution of the modified boundary value problem of de la Vallée-Poussin have been found for a nonlinear ordinary differential equation u (n) = f(t, u, u′, … , u (n–1)), where the function f has nonitegrable singularities with respect to the first argument.

Author(s):  
Gusen E. Abduragimov ◽  
Patimat E. Abduragimova ◽  
Madina M. Kuramagomedova

In the article, we consider a boundary value problem for a nonlinear ordinary differential equation of even order which, obviously, has a trivial solution. Sufficient conditions for the existence and uniqueness of a positive solution to this problem are obtained. With the help of linear transformations of T. Y. Na [T. Y. Na, Computational Methods in Engineering Boundary Value Problems, Acad. Press, NY, 1979, ch. 7], the boundary value problem is reduced to the Cauchy problem, the initial conditions of which make it possible to uniquely determine the transformation parameter. It is shown that the transformations of T. Y. Na uniquely determine the solution of the original problem. In addition, based on the proof of the uniqueness of a positive solution to the boundary value problem, a sufficiently effective non–iterative numerical algorithm for constructing such a solution is obtained. A corresponding example is given.


Author(s):  
Pengyu Chen ◽  
Zhen Xin ◽  
Xuping Zhang

Abstract We consider Lipschitz stability of zero solutions to the initial value problem of nonlinear ordinary differential equations with non-instantaneous impulses on ordered Banach spaces. Using Lyapunov function, Lipschitz stability of zero solutions to nonlinear ordinary differential equation with non-instantaneous impulses is obtained.


1962 ◽  
Vol 2 (4) ◽  
pp. 425-439 ◽  
Author(s):  
A. Erdéyi

In this paper we shall discuss the boundary value problem consisting of the nonlinear ordinary differential equation of the second order, and the boundary conditions.


Author(s):  
A. Cañada ◽  
R. Ortega

SynopsisThe existence of solutions to equations in normed spaces is proved when the nonlinear part of the equation satisfies growth and asymptotic conditions, whether the linear part is invertible or not. For this, we use the coincidence degree theory developed by Mawhin. We apply our abstract results to boundary value problems for nonlinear vector ordinary differential equations. In particular, we consider the Picard boundary value problem at the first eigenvalue and the periodic boundary value problem at resonance. In both cases, the nonlinear term can be of superlinear type. Also, necessary and sufficient conditions of Landesman-Lazer type are obtained.


2009 ◽  
Vol 139 (5) ◽  
pp. 1017-1035 ◽  
Author(s):  
Ch. G. Philos

This article is devoted to the study of the existence of solutions as well as the existence and uniqueness of solutions to a boundary-value problem on the half-line for higher-order nonlinear ordinary differential equations. An existence result is obtained by the use of the Schauder–Tikhonov theorem. Furthermore, an existence and uniqueness criterion is established using the Banach contraction principle. These two results are applied, in particular, to the specific class of higher-order nonlinear ordinary differential equations of Emden–Fowler type and to the special case of higher-order linear ordinary differential equations, respectively. Moreover, some (general or specific) examples demonstrating the applicability of our results are given.


Author(s):  
Nelson Onuchic ◽  
Plácido Z. Táboas

SynopsisThe perturbed linear ordinary differential equationis considered. Adopting the same approach of Massera and Schäffer [6], Corduneanu states in [2] the existence of a set of solutions of (1) contained in a given Banach space. In this paper we investigate some topological aspects of the set and analyze some of the implications from a point of view ofstability theory.


2017 ◽  
Vol 24 (2) ◽  
pp. 265-275
Author(s):  
Sulkhan Mukhigulashvili ◽  
Mariam Manjikashvili

AbstractIn this article we consider the two-point boundary value problem\left\{\begin{aligned} &\displaystyle u^{(4)}(t)=p(t)u(t)+h(t)\quad\text{for }% a\leq t\leq b,\\ &\displaystyle u^{(i)}(a)=c_{1i},\quad u^{(i)}(b)=c_{2i}\quad(i=0,1),\end{% aligned}\right.where {c_{1i},c_{2i}\in R}, {h,p\in L([a,b];R)}. Here we study the question of dimension of the space of nonzero solutions and oscillatory behaviors of nonzero solutions on the interval {[a,b]} for the corresponding homogeneous problem, and establish efficient sufficient conditions of solvability for the nonhomogeneous problem.


Sign in / Sign up

Export Citation Format

Share Document