Non-Abelian Cohomology of Groups

1997 ◽  
Vol 4 (4) ◽  
pp. 313-331
Author(s):  
H. Inassaridze

Abstract Following Guin's approach to non-abelian cohomology [Guin, Pure Appl. Algebra 50: 109–137, 1988] and, using the notion of a crossed bimodule, a second pointed set of cohomology is defined with coefficients in a crossed module, and Guin's six-term exact cohomology sequence is extended to a nine-term exact sequence of cohomology up to dimension 2.

2010 ◽  
Vol 10 (2) ◽  
pp. 359-404 ◽  
Author(s):  
Behrang Noohi

AbstractWe compare three different ways of defining group cohomology with coefficients in a crossed module: (1) explicit approach via cocycles; (2) geometric approach via gerbes; (3) group theoretic approach via butterflies. We discuss the case where the crossed module is braided and the case where the braiding is symmetric. We prove the functoriality of the cohomologies with respect to weak morphisms of crossed modules and also prove the ‘long’ exact cohomology sequence associated to a short exact sequence of crossed modules and weak morphisms.


Author(s):  
Graham J. Ellis

AbstractThe Hurewicz theorem, Mayer-Vietoris sequence, and Whitehead's certain exact sequence are proved for simplicial Lie algebras. These results are applied, using crossed module techniques, to obtain information on the low dimensional homology of a Lie algebra, and information on aspherical presentations of Lie algebras.


2020 ◽  
Vol 126 (1) ◽  
pp. 5-31
Author(s):  
Nicolaus Heuer

Bounded cohomology of groups was first studied by Gromov in 1982 in his seminal paper M. Gromov, Volume and bounded cohomology, Inst. Hautes Études Sci. Publ. Math. (1982), no. 56, 5–99. Since then it has sparked much research in Geometric Group Theory. However, it is notoriously hard to explicitly compute bounded cohomology, even for most basic “non-positively curved” groups. On the other hand, there is a well-known interpretation of ordinary group cohomology in dimension $2$ and $3$ in terms of group extensions. The aim of this paper is to make this interpretation available for bounded group cohomology. This will involve quasihomomorphisms as defined and studied by K. Fujiwara and M. Kapovich, On quasihomomorphisms with noncommutative targets, Geom. Funct. Anal. 26 (2016), no. 2, 478–519.


2018 ◽  
Vol 10 (2) ◽  
pp. 288-295
Author(s):  
M. Dehghani ◽  
B. Davvaz

A crossed module $(T,G,\partial)$ consist of a group homomorphism $\partial:T\rightarrow G$ together with an action $(g,t)\rightarrow{}^{\,g}t$ of $G$ on $T$ satisfying $\partial(^{\,g}t)=g\partial(t)g^{-1}$ and $\,^{\partial(s)}t=sts^{-1}$, for all $g\in G$ and $s,t\in T$. The term crossed module was introduced by J. H. C. Whitehead in his work on combinatorial homotopy theory. Crossed modules and its applications play very important roles in category theory, homotopy theory, homology and cohomology of groups, algebra, K-theory etc. In this paper, we define Adeny-Yen crossed module map and central automorphisms of crossed modules. If $C^*$ is the set of all central automorphisms of crossed module $(T,G,\partial)$ fixing $Z(T,G,\partial)$ element-wise, then we give a necessary and sufficient condition such that $C^*=I_{nn}(T,G,\partial).$ In this case, we prove $Aut_C(T,G,\partial)\cong Hom((T,G,\partial), Z(T,G,\partial))$. Moreover, when $Aut_C(T,G,\partial)\cong Z(I_{nn}(T,G,\partial)))$, we obtain some results in this respect.


Author(s):  
Benson Farb ◽  
Dan Margalit

This chapter considers the Dehn–Lickorish theorem, which states that when g is greater than or equal to 0, the mapping class group Mod(Sɡ) is generated by finitely many Dehn twists about nonseparating simple closed curves. The theorem is proved by induction on genus, and the Birman exact sequence is introduced as the key step for the induction. The key to the inductive step is to prove that the complex of curves C(Sɡ) is connected when g is greater than or equal to 2. The simplicial complex C(Sɡ) is a useful combinatorial object that encodes intersection patterns of simple closed curves in Sɡ. More detailed structure of C(Sɡ) is then used to find various explicit generating sets for Mod(Sɡ), including those due to Lickorish and to Humphries.


Author(s):  
JOUNI PARKKONEN ◽  
FRÉDÉRIC PAULIN

Abstract We develop the relationship between quaternionic hyperbolic geometry and arithmetic counting or equidistribution applications, that arises from the action of arithmetic groups on quaternionic hyperbolic spaces, especially in dimension 2. We prove a Mertens counting formula for the rational points over a definite quaternion algebra A over ${\mathbb{Q}}$ in the light cone of quaternionic Hermitian forms, as well as a Neville equidistribution theorem of the set of rational points over A in quaternionic Heisenberg groups.


2021 ◽  
pp. 1-54
Author(s):  
MANUEL L. REYES ◽  
DANIEL ROGALSKI

Abstract This is a general study of twisted Calabi–Yau algebras that are $\mathbb {N}$ -graded and locally finite-dimensional, with the following major results. We prove that a locally finite graded algebra is twisted Calabi–Yau if and only if it is separable modulo its graded radical and satisfies one of several suitable generalizations of the Artin–Schelter regularity property, adapted from the work of Martinez-Villa as well as Minamoto and Mori. We characterize twisted Calabi–Yau algebras of dimension 0 as separable k-algebras, and we similarly characterize graded twisted Calabi–Yau algebras of dimension 1 as tensor algebras of certain invertible bimodules over separable algebras. Finally, we prove that a graded twisted Calabi–Yau algebra of dimension 2 is noetherian if and only if it has finite GK dimension.


Sign in / Sign up

Export Citation Format

Share Document