A Dirichlet Problem for the Inhomogeneous Polyharmonic Equation in the Upper Half Plane

2007 ◽  
Vol 14 (1) ◽  
pp. 33-52
Author(s):  
Heinrich Begehr ◽  
Evgenija Gaertner

Abstract On the basis of a higher order integral representation formula related to the polyharmonic differential operator and obtained through a certain polyharmonic Green function, a Dirichlet problem is explicitly solved in the upper half plane.

Mathematics ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 364
Author(s):  
Ekaterina Madamlieva ◽  
Mihail Konstantinov ◽  
Marian Milev ◽  
Milena Petkova

The aim of this work is to obtain an integral representation formula for the solutions of initial value problems for autonomous linear fractional neutral systems with Caputo type derivatives and distributed delays. The results obtained improve and extend the corresponding results in the particular case of fractional systems with constant delays and will be a useful tool for studying different kinds of stability properties. The proposed results coincide with the corresponding ones for first order neutral linear differential systems with integer order derivatives.


2020 ◽  
Vol 32 (08) ◽  
pp. 2050024
Author(s):  
Evgeny Korotyaev ◽  
Natalia Saburova

We consider the Laplacian on a periodic metric graph and obtain its decomposition into a direct fiber integral in terms of the corresponding discrete Laplacian. Eigenfunctions and eigenvalues of the fiber metric Laplacian are expressed explicitly in terms of eigenfunctions and eigenvalues of the corresponding fiber discrete Laplacian and eigenfunctions of the Dirichlet problem on the unit interval. We show that all these eigenfunctions are uniformly bounded. We apply these results to the periodic metric Laplacian perturbed by real integrable potentials. We prove the following: (a) the wave operators exist and are complete, (b) the standard Fredholm determinant is well-defined and is analytic in the upper half-plane without any modification for any dimension, (c) the determinant and the corresponding S-matrix satisfy the Birman–Krein identity.


1998 ◽  
Vol 65 (4) ◽  
pp. 930-938 ◽  
Author(s):  
K.-E. Fa¨llstro¨m ◽  
O. Lindblom

In this paper we study transient propagating bending waves. We use the equations of orthotropic plate dynamics, derived by Chow about 25 years ago, where both transverse shear and rotary inertia are included. These equations are extended to include anisotropic plates and an integral representation formula for the bending waves is derived. Chow’s model is compared with the classical Kirchoff’s model. We also investigate the influence of the rotary inertia. Comparisons with experimental data are made as well.


2019 ◽  
Author(s):  
Naum Khutoryansky

An approach to building explicit time-marching stencil computation schemes for the transient 2D acoustic wave equation without using finite-difference approximations is proposed and implemented. It is based on using the integral representation formula (Poisson's formula) that provides the exact solution of the initial-value problem for the transient 2D scalar wave equation at any time point through the initial conditions. For the purpose of constructing a two-step time-marching algorithm, a modified integral representation formula involving three time levels is also employed. It is shown that integrals in the two representation formulas are exactly calculated if the initial conditions and the sought solution at each time level as functions of spatial coordinates are approximated by stencil interpolation polynomials in the neighborhood of any point in a 2D Cartesian grid. As a result, if a uniform time grid is chosen, the proposed time-marching algorithm consists of two numerical procedures: 1) the solution calculation at the first time-step through the initial conditions; 2) the solution calculation at the second and next time-steps using a generated two-step numerical scheme. Three particular explicit stencil schemes (with five, nine and 13 space points) are built using the proposed approach. Their stability regions are presented. The obtained stencil expressions are compared with the corresponding finite-difference schemes available in the literature. Their novelty features are discussed. Simulation results with new and conventional schemes are presented for two benchmark problems that have exact solutions. It is demonstrated that using the new first time-step calculation procedure instead of the conventional one can provide a significant improvement of accuracy even for later time steps.


1979 ◽  
Vol 31 (5) ◽  
pp. 1107-1120 ◽  
Author(s):  
Peter C. Greiner

Let(1)and set(2)Here . Z is the “unique” (modulo multiplication by nonzero functions) holomorphic vector-field which is tangent to the boundary of the “degenerate generalized upper half-plane”(3)In our terminology t = Re z1. We note that ℒ is nowhere elliptic. To put it into context, ℒ is of the type □b, i.e. operators like ℒ occur in the study of the boundary Cauchy-Riemann complex. For more information concerning this connection the reader should consult [1] and [2].


1975 ◽  
Vol 42 (4) ◽  
pp. 896-897 ◽  
Author(s):  
M. L. Pasha

We present the axially symmetric stress distributions in elastic solids containing a pair of axially symmetric penny shaped cracks when the infinite elastic medium is kept under torsion. We derive the integral representation formula for the torsion function and the expressions for the stress-intensity factors.


Sign in / Sign up

Export Citation Format

Share Document