scholarly journals Sulphides in Hard Coal Seams from the Orzesze Beds s.s. of Mudstone Series (Westphalian B) in the Eastern Part of the Upper Silesian Coal Basin

2016 ◽  
Vol 32 (3) ◽  
pp. 23-38
Author(s):  
Barbara Bielowicz ◽  
Jacek Misiak

Abstract Due to dynamic climatic changes resulting, among others, from the use of coal, the content of harmful substances in coal is of particular importance. Dangerous air pollution resulting from the burning of coal (e.g. As, Se, Hg, Pb, Sb) is often associated with sulfide minerals in coal. The study focused on the sulphides occurring in Polish hard coal deposits. Sulfides are one of the forms of occurrence of sulfur in coal. In this paper, an emphasis has been placed on on the characteristics of forms of occurrence of sulphides on both macroscopic and microscopic scale and on the chemical analysis in the micro area. The study has been conducted for the No. 301–308 seams from the eastern part of the Upper Silesian Coal Basin, stratigraphically belonging to the highest part of the Orzesze Beds s.s. (Westphalian B). The coal samples have been collected from the coal seams in the underground excavations of the following coal mines: Jan Kanty, Sobieski Jaworzno I, Wesoła and Ziemowit hard coal mine. Iron sulfides (pyrite, marcasite) in coal seams of the Orzesze Beds s.s. form various forms of macroscopically visible aggregates. These include massive, vein, pocket-like (impregnation) or dispersed forms. On the basis of microscopic observations, the following forms of occurence of iron sulphides in the tested coal have been determined: skeletal and massive vein forms, massive pocket-like (impregnation) forms, framboidal pyrite and euhedral crystals. The most common form of sulfides in the studied coal seams are vein forms cutting across bedding, usually creating complex dendritic and skeletal forms. Iron sulfides often occur in pocket-like (impregnation) forms, not directly linked with vein forms and fusinite. The WDS analysis in the micro area has revealed the chemical composition of sulfides in eight coal samples. As follows from the analysis, the tested coal seams are dominated by FeS2 iron sulfides. It has been shown that the iron sulfides contained small admixtures of Pb, Hg, Zn, Cu, Ag, Co Sb and Ni. The admixtures of As and Cd have been observed only in individual minerals. Lead, reaching up to 1.06%, has the highest concentration out of all admixtures in pyrite and marcasite. Small amounts of galena, titanium oxides (rutile), monazite and barite have also been found in the tested coal samples. Locally, vein forms, pyrite and dolomite were interlaying each other; the same applies to pyrite and apatite. In addition, dolomite fills part of the cells in fusinite.

2021 ◽  
Vol 80 (22) ◽  
Author(s):  
Marcin Dreger ◽  
Sławomir Kędzior

AbstractThe paper presents the variability of hard coal output, methane content and methane emissions into coal workings and into the atmosphere from the two most methane-gassy coal mines in Poland. The Budryk mine is one of the youngest mines in Poland, but it is the most methane-gassy as well. In 2016, the total CH4 emissions exceed 140 million of m3. This large increase in methane emissions to mine workings is primarily related to the increase in the depth of coal extraction (up to 1290 m) and, consequently, the rapid increase in the methane content in coal seams (up to 10–12 m3/Mg coaldaf). On the other hand, in the Pniówek mine, methane emission was the highest at the beginning of the study period (1986–1991). During the following years, emission decreased to the values of less than 140 million of m3, which were still one of the largest amounts of emitted methane in the entire Upper Silesian Coal Basin. The coexistence of natural factors, such as the geological structure and gas distribution, as well as mining-related factors, i.e. the depth of mining, the intensity of coal extraction determines the temporal variability of methane emissions in the studied mines.


2019 ◽  
Vol 7 (1) ◽  
pp. 12-23 ◽  
Author(s):  
Marcin Dreger ◽  
Sławomir Kędzior

Abstract Between 1997 and 2016 we observed important changes in hard coal extraction and methane emission in the Upper Silesian Coal Basin. Hard coal extraction in the near future will be very dangerous because it will be necessary to reach deeper methane-rich coal seams. Permanent monitoring of the volume of emitted and captured methane is necessary to combat the methane hazard. The predictability of gaseous hazards are important in order to keep underground work safe. We gathered and analysed data from three coal companies: Katowice Coal Holding, the Coal Company, Jastrzębie Coal Company and in the whole of the Upper Silesian Coal Basin for the last twenty years and this allowed us to notice changes and CH4 trends in ventilation emission and demethanation. There is a decrease in the extraction of hard coal from year to year. At the same time there is an increase in the total methane emissions which forces actions aimed to effective contracting the methane hazard. Specifically, methane emission has been increasing for years, making hard coal extraction very dangerous. We observed increases in CH4 vent emission and volume of methane coming from underground drainage systems. Much more methane is released during hard coal extraction at deeper mine levels. Throughout the entire research period the methane hazard increased. Therefore, the development of modern technologies for methane capturing should contribute to improvement of hazardous conditions for coal mining in the basin.


2020 ◽  
Vol 177 (12) ◽  
pp. 5723-5739
Author(s):  
Łukasz Wojtecki ◽  
Maciej J. Mendecki ◽  
Iwona Gołda ◽  
Wacław M. Zuberek

AbstractThe underground mining of coal seams in the Upper Silesian Coal Basin is carried out at great depths and mostly in the presence of remnants or edges of other surrounding coal seams, i.e. under the condition of high stress level in the rock mass. Therefore, this mining is accompanied by rockburst hazard and suitable preventive action is required. Long-hole destress blasting plays an important role and is commonly applied in rockburst prevention in underground hard coal mines. Estimated blasting effectiveness is important when designing rockburst prevention. It is commonly estimated on the basis of the seismic energy of a provoked tremor. The seismic source parameters have already been considered for this purpose. Additional information about the effects of long-hole destress blasting could be contemplated in the planning of active rockburst prevention. The seismic source parameters of tremors provoked by long-hole destress blasting have been calculated and are presented in this article. Destress blasts were performed during the longwall mining of coal seam no. 506 in one of the hard coal mines in the Upper Silesian Coal Basin. They were executed from the longwall face, in order to destress the rock mass ahead of it. Parameters of the blasts were variable and they were modified according to geological and mining conditions and the observed level of rockburst hazard. The seismic source parameters have been determined for tremors provoked directly after firing explosives and for tremors occurring in the waiting time, and they have been compared with each other.


2017 ◽  
Vol 33 (2) ◽  
pp. 97-112
Author(s):  
Marek Marcisz

Abstract The paper presents the results of research on the degree of faulting of deposits/mining areas of the Upper Silesian Coal Basin having been carried out since the 1970s. The results of these works are comprised of an analysis of the density of faults and an of the faulting index for 26 deposits/mining areas in the borders of the USCB. The statistical presentation of the problem includes three main parameters that characterize the tectonic complication of hard coal deposits in the borders of mining areas: lineal density GUL, surface density GUP and synthetic faulting index WU. The comparison of values of these parameters for particular deposits/mining areas was used for drawing up maps of their changes, whereas the results of the obtained view of variability have been interpolated and extrapolated to the borders of the entire basin. The results of the research showed that the values of GUL vary between 0.2 and 9.4 of faults/ m·10-3 and for all four analyzed directions: W-E, N-W, NW-SE i NE-SW, indicate a significant growing tendency in the following directions: N and NW and in SW. According to an analysis of GUP, it was stated that the largest part of the study area is occupied by the area in which there are no faults and the percentage of surface with GUP > 300 m/m2·10-4 is insignificant and does not have an essential influence on the rate and value of the faulting index. WU varies between 1.4 and 131.4 m/m2·10-4 (average for USCB: WU = 52.1 m/m2·10-4) and indicates a significant increasing tendency in the directions: N and NW as well as in the direction of SW. This determines the occurrence of USCB deposits of extreme different grade of tectonic complication in the borders: from not complicated (I grade) to very strongly complicated (VI grade).


Clay Minerals ◽  
1992 ◽  
Vol 27 (3) ◽  
pp. 269-282 ◽  
Author(s):  
Z. Weiss ◽  
A. Baronnet ◽  
M. Chmielova

AbstractIn the Czechoslovak part of the Upper Silesian Coal Basin (Ostrava-Karvina Coal Basin), only part of the Upper Carboniferous (Namurian A, B, C and Westphalian A) is well developed, and tonsteins, which are clayey rocks or claystones, occur as thin, clayey interlayers in the coal seams. Two types of primary volcanic mineral assemblages were identified in four tonstein samples from different coal seams; the first type is characterized by the presence of biotite and sanidine, and the second by the presence of biotite, bytownite and Ca-amphibole. All tonsteins studied contained kaolinite minerals, volcanic quartz grains, crystals of zircon and apatite. Separated biotite flakes with an admixture of kaolinite layers were identified as 1M polytype. The flakes without kaolinite minerals were identified as epitactic overgrowth of 1M and complex polytypes, and twinned crystals of 2M1 polytype. Kaolinization of biotite flakes was observed in all tonstein samples studied. Kaolinite single layers (7 Å) as well as two-layer polytype of kaolinite minerals (14 Å) sandwiched between biotite layers (10 Å) were identified by HRTEM imaging.


Resources ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 127
Author(s):  
Justyna Auguścik-Górajek ◽  
Marek Nieć

The mercury content in bituminous coal in Poland varies depending on the coal basin. The highest of its concentrations are recorded in the Lower Silesian Coal Basin where this may be the result of the volcanic activity reported there. A much lower average of Hg content was recorded in Lublin and the Upper Silesian Coal Basins (LCB and USCB), although it was higher in the former. A higher mercury concentration in the LCB is probably related to the zone of supposed deep disturbances, named the Karpinsky lineament. Most published works present the data on the mercury content in the bulk of mined coal. The preliminary assessment of mercury content in coal seams indicates that it varies considerably between and within them. It is bound to the presence of arsenic-bearing iron sulfides. Concentration of mercury in small zones of limited extent suggests it was introduced by migrating fluids. The knowledge of mercury content distribution in coal seams would improve the prediction of its content in the mined coal and allow better management of produced coal quality with the aim of reducing mercury emission to the atmosphere as a result of coal combustion.


Sign in / Sign up

Export Citation Format

Share Document