scholarly journals Methane emissions against the background of natural and mining conditions in the Budryk and Pniówek mines in the Upper Silesian Coal Basin (Poland)

2021 ◽  
Vol 80 (22) ◽  
Author(s):  
Marcin Dreger ◽  
Sławomir Kędzior

AbstractThe paper presents the variability of hard coal output, methane content and methane emissions into coal workings and into the atmosphere from the two most methane-gassy coal mines in Poland. The Budryk mine is one of the youngest mines in Poland, but it is the most methane-gassy as well. In 2016, the total CH4 emissions exceed 140 million of m3. This large increase in methane emissions to mine workings is primarily related to the increase in the depth of coal extraction (up to 1290 m) and, consequently, the rapid increase in the methane content in coal seams (up to 10–12 m3/Mg coaldaf). On the other hand, in the Pniówek mine, methane emission was the highest at the beginning of the study period (1986–1991). During the following years, emission decreased to the values of less than 140 million of m3, which were still one of the largest amounts of emitted methane in the entire Upper Silesian Coal Basin. The coexistence of natural factors, such as the geological structure and gas distribution, as well as mining-related factors, i.e. the depth of mining, the intensity of coal extraction determines the temporal variability of methane emissions in the studied mines.

2020 ◽  
Author(s):  
Marcin Dreger ◽  
Sławomir Kędzior

Abstract The paper presents the variability of hard coal output, methane content and methane emissions into coal workings and into the atmosphere from the two most methane-gassy coal mines in Poland, Budryk and Pniówek, which are both incorporated in the Jastrzębie Coal Company. The Budryk mine is one of the youngest mines in Poland, but it is the most methane-gassy as well. In 2016, the total CH4 emissions exceed 140 million of m3. This large increase in methane emissions to mine workings is primarily related to the increase in the depth of coal extraction (up to 1290 m) and, consequently, the rapid increase in the methane content in coal seams (up to 10-12 m3 / Mg coaldaf). On the other hand, in the Pniówek mine, methane emission was the highest at the beginning of the study period (1986-1991). During the following years emission decreased to the values of less than 140 million of m3, which were still one of the largest amounts of emitted methane in the entire Upper Silesian Coal Basin. The vertical distribution of methane content, different than in the Budryk mine, and the presence of a secondary high methane zone at the Carboniferous top, seem to be decisive for the long-term distribution of methane emissions in the Pniówek mine. The coexistence of natural factors, such as the geological structure and gas distribution, as well as mining-related factors, i.e. the depth of mining, the concentration of coal extraction determines the temporal variability of methane emissions in the studied mines.


2020 ◽  
Vol 46 (2) ◽  
pp. 159
Author(s):  
Marcin Dreger

The paper presents the variability of methane emissions in mining excavations in the Brzeszcze mine (Poland) against the background of hard coal output, geological and mining factors. The geological structure of the Upper Silesian Coal Basin (USCB) is very diverse. The Brzeszcze coal deposit is located close to the large and permeable Jawiszowice fault which increases the methane hazard during mining activities performed close to this fault. The overall decrease in hard coal output (1988–2018) has coincided with a rapid increase in methane emissions (1997–2018). Throughout the study period, hard coal output decreased threefold from 3.9 to 1.2 million Mg annually. Coal extraction in high methane content beds (e.g. 510, 405/1, 364, 352) increases the total methane (CH4) emission into mining excavations, aggravating the methane hazard due to the high explosiveness of the gas. To protect miners, coal workings need to be continuously ventilated, taking the harmful gas out of the mine (ventilation air methane emission) or methane needs to be captured by underground methane systems (degassing). Every year, over 34 million m3 of CH4 is captured by the drainage systems and over 70 million m3 CH4 (average) is discharged through ventilation shafts into the atmosphere. The presence of the large, permeable regional dislocation, the Jawiszowice fault zone, shaped the methane concentration in the fault vicinity, when the highest methane emissions during coal mining was studied.


2019 ◽  
Vol 7 (1) ◽  
pp. 12-23 ◽  
Author(s):  
Marcin Dreger ◽  
Sławomir Kędzior

Abstract Between 1997 and 2016 we observed important changes in hard coal extraction and methane emission in the Upper Silesian Coal Basin. Hard coal extraction in the near future will be very dangerous because it will be necessary to reach deeper methane-rich coal seams. Permanent monitoring of the volume of emitted and captured methane is necessary to combat the methane hazard. The predictability of gaseous hazards are important in order to keep underground work safe. We gathered and analysed data from three coal companies: Katowice Coal Holding, the Coal Company, Jastrzębie Coal Company and in the whole of the Upper Silesian Coal Basin for the last twenty years and this allowed us to notice changes and CH4 trends in ventilation emission and demethanation. There is a decrease in the extraction of hard coal from year to year. At the same time there is an increase in the total methane emissions which forces actions aimed to effective contracting the methane hazard. Specifically, methane emission has been increasing for years, making hard coal extraction very dangerous. We observed increases in CH4 vent emission and volume of methane coming from underground drainage systems. Much more methane is released during hard coal extraction at deeper mine levels. Throughout the entire research period the methane hazard increased. Therefore, the development of modern technologies for methane capturing should contribute to improvement of hazardous conditions for coal mining in the basin.


2015 ◽  
Vol 3 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Sławomir Kędzior

Abstract The article deals with the issue of the release of methane from coal seams and its emission to the atmosphere from the mines of Katowice Coal Holding Company in the years of 1997-2011. This period is characterized by organizational changes in Polish mining industry involving liquidation or a merger of mines, an increase in both the concentration of coal mining activity, and the depth of the exploitation at which the amount of methane in coal seams grows ever larger. The analysis of the variation in the methane emission from the coal mines in that period points out a decline in the intensity of the emission until 2005, probably owing to the liquidation of some mines, later, but in the years of 2006-2010 - a considerable increase in both the absolute methane emission of the mines and the methane emission to the atmosphere despite a dropping coal extraction. This signifies that mining activity takes place in increasingly difficult gas conditions prevailing at great depths. Despite a slight decrease in both the absolute methane emission and methane emission to the atmosphere in 2011, a continuously growing trend of this phenomenon should be expected in the future. A similar tendency is also visible in the whole Upper Silesian Coal Basin, however the methane emission peak falls in 2008. In order to curb the growth of the amount of the emitted methane, it should be commercially utilized. Particularly vital is considering methane as an unconventional resource, following the example of other countries.


2020 ◽  
Vol 177 (12) ◽  
pp. 5723-5739
Author(s):  
Łukasz Wojtecki ◽  
Maciej J. Mendecki ◽  
Iwona Gołda ◽  
Wacław M. Zuberek

AbstractThe underground mining of coal seams in the Upper Silesian Coal Basin is carried out at great depths and mostly in the presence of remnants or edges of other surrounding coal seams, i.e. under the condition of high stress level in the rock mass. Therefore, this mining is accompanied by rockburst hazard and suitable preventive action is required. Long-hole destress blasting plays an important role and is commonly applied in rockburst prevention in underground hard coal mines. Estimated blasting effectiveness is important when designing rockburst prevention. It is commonly estimated on the basis of the seismic energy of a provoked tremor. The seismic source parameters have already been considered for this purpose. Additional information about the effects of long-hole destress blasting could be contemplated in the planning of active rockburst prevention. The seismic source parameters of tremors provoked by long-hole destress blasting have been calculated and are presented in this article. Destress blasts were performed during the longwall mining of coal seam no. 506 in one of the hard coal mines in the Upper Silesian Coal Basin. They were executed from the longwall face, in order to destress the rock mass ahead of it. Parameters of the blasts were variable and they were modified according to geological and mining conditions and the observed level of rockburst hazard. The seismic source parameters have been determined for tremors provoked directly after firing explosives and for tremors occurring in the waiting time, and they have been compared with each other.


2016 ◽  
Vol 32 (3) ◽  
pp. 23-38
Author(s):  
Barbara Bielowicz ◽  
Jacek Misiak

Abstract Due to dynamic climatic changes resulting, among others, from the use of coal, the content of harmful substances in coal is of particular importance. Dangerous air pollution resulting from the burning of coal (e.g. As, Se, Hg, Pb, Sb) is often associated with sulfide minerals in coal. The study focused on the sulphides occurring in Polish hard coal deposits. Sulfides are one of the forms of occurrence of sulfur in coal. In this paper, an emphasis has been placed on on the characteristics of forms of occurrence of sulphides on both macroscopic and microscopic scale and on the chemical analysis in the micro area. The study has been conducted for the No. 301–308 seams from the eastern part of the Upper Silesian Coal Basin, stratigraphically belonging to the highest part of the Orzesze Beds s.s. (Westphalian B). The coal samples have been collected from the coal seams in the underground excavations of the following coal mines: Jan Kanty, Sobieski Jaworzno I, Wesoła and Ziemowit hard coal mine. Iron sulfides (pyrite, marcasite) in coal seams of the Orzesze Beds s.s. form various forms of macroscopically visible aggregates. These include massive, vein, pocket-like (impregnation) or dispersed forms. On the basis of microscopic observations, the following forms of occurence of iron sulphides in the tested coal have been determined: skeletal and massive vein forms, massive pocket-like (impregnation) forms, framboidal pyrite and euhedral crystals. The most common form of sulfides in the studied coal seams are vein forms cutting across bedding, usually creating complex dendritic and skeletal forms. Iron sulfides often occur in pocket-like (impregnation) forms, not directly linked with vein forms and fusinite. The WDS analysis in the micro area has revealed the chemical composition of sulfides in eight coal samples. As follows from the analysis, the tested coal seams are dominated by FeS2 iron sulfides. It has been shown that the iron sulfides contained small admixtures of Pb, Hg, Zn, Cu, Ag, Co Sb and Ni. The admixtures of As and Cd have been observed only in individual minerals. Lead, reaching up to 1.06%, has the highest concentration out of all admixtures in pyrite and marcasite. Small amounts of galena, titanium oxides (rutile), monazite and barite have also been found in the tested coal samples. Locally, vein forms, pyrite and dolomite were interlaying each other; the same applies to pyrite and apatite. In addition, dolomite fills part of the cells in fusinite.


Sign in / Sign up

Export Citation Format

Share Document