EAF Gas Waste Heat Utilization and Discussion of the Energy Conservation and CO2 Emissions Reduction

2016 ◽  
Vol 35 (2) ◽  
pp. 195-200 ◽  
Author(s):  
Ling-zhi Yang ◽  
Rong Zhu ◽  
Guo-hong Ma

AbstractAs a large number of energy was taken away by the high temperature furnace gas during the EAF smelting process, a huge economic and environmental benefits would obtained to recycle and utilize. In this paper, the energy of the EAF was analyzed theoretically with the hot metal ratio of 50%. Combined with the utilization of the gas waste heat during the scrap preheating, electricity generation, production of steam and production of coal gas processes, the effect of the energy saving and emission was calculated with comprehensive utilization of the high temperature furnace gas. An optimal scheme for utilization of the waste heat was proposed based on the calculation. The results show that the best way for energy saving and carbon reduction is the production of coal gas, while the optimal scheme for waste heat utilization is combined the production of coal gas with the scrap preheating, which will save 170 kWh/t of energy and decrease 57.88 kg/t of carbon emission. As hot metal ratio in EAF steelmaking is often more than 50%, which will produce more EAF gas waste heat, optimizing EAF gas waste heat utilization will have more obvious effect on energy saving and emission reduction.

2017 ◽  
Vol 36 (6) ◽  
pp. 615-621 ◽  
Author(s):  
Ling-zhi Yang ◽  
Tao Jiang ◽  
Guang-hui Li ◽  
Yu-feng Guo

AbstractAs the cost of hot metal is reduced for iron ore prices are falling in the international market, more and more electric arc furnace (EAF) steelmaking enterprises use partial hot metal instead of scrap as raw materials to reduce costs and the power consumption. In this paper, carbon emissions based on 1,000 kg molten steel by charging hot metal in EAF steelmaking is studied. Based on the analysis of material and energy balance calculation in EAF, the results show that 146.9, 142.2, 137.0, and 130.8 kg/t of carbon emissions are produced at a hot metal ratio of 0 %, 30 %, 50 %, and 70 %, while 143.4, 98.5, 65.81, and 31.5 kg/t of carbon emissions are produced at a hot metal ratio of 0 %, 30 %, 50 %, and 70 % by using gas waste heat utilization (coal gas production) for EAF steelmaking unit process. However, carbon emissions are increased by charging hot metal for the whole blast furnace–electric arc furnace (BF–EAF) steelmaking process. In the condition that the hot metal produced by BF is surplus, as carbon monoxide in gas increased by charging hot metal, the way of coal gas production can be used for waste heat utilization, which reduces carbon emissions in EAF steelmaking unit process.


2018 ◽  
Vol 37 (4) ◽  
pp. 357-363 ◽  
Author(s):  
Ling-zhi Yang ◽  
Tao Jiang ◽  
Guang-hui Li ◽  
Yu-feng Guo ◽  
Feng Chen

AbstractWith the increase of hot metal ratio in electric arc furnace (EAF) steelmaking process, physical sensible heat and chemical latent heat of gas increased significantly. As EAF raw material condition is similar to basic oxygen furnace (BOF), and the condition of BOF gas waste heat utilization technology is mature, waste heat utilization technology in EAF steelmaking will be getting more and more attention. Scrap preheating and steam production as mature technology is the main way of EAF gas waste heat utilization. Power generation converted high temperature steam to electricity will further improve the EAF gas utilization value. The previous ways are to recycle physical sensible heat of EAF gas. To use chemical latent heat of gas, the secondary combustion technology is usually adopted to make CO fully burn into CO2. Coal gas production can fully recycle the chemical latent heat of gas theoretically, which is higher efficiency than other ways. Coal gas production needs a stable steelmaking process to stabilize high temperature gas. And the way need to develop EAF sealing technology, oxygen removal technology and gas purification technology, to make gas content meet the requirements of coal gas production in EAF steelmaking process.


2021 ◽  
Vol 4 (1) ◽  
pp. 1
Author(s):  
Shuli Liu

In the automobile painting workshop, the oven will discharge harmful exhaust gas, the exhaust gas can be reused through the TNV system, the natural gas can meet the emission standard to the atmosphere after burning, and the high temperature gas discharged TNV the system can carry considerable heat. Utilization can effectively improve the economic benefits of the factory. At present, the more mature scheme is to heat the high temperature exhaust gas through the heat exchanger, which can reduce the steam consumption of the factory. Based on the analysis of the comprehensive energy saving content of waste heat utilization of RTO flue gas, this paper hopes to provide some reference and reference for readers.


Energies ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 3145 ◽  
Author(s):  
Kang ◽  
Shin

Recently, extensive studies on power generation using clean energy have been conducted to reduce air pollution and global warming. In particular, as existing internal combustion engines lose favor to power generation through hydrogen fuel cells, the development of tri-generation technology using efficient and reliable fuel cells is gaining importance. This study proposes a tri-generation thermal management model that enables thermal control and waste heat utilization control of a high-temperature PEMFC stack that simultaneously satisfies combined cooling, heating, and power (CCHP) load. As the high-temperature PEMFC stack operates at 150 °C or more, a tri-generative system using such a stack requires a thermal management system that can maintain the operating temperature of the stack and utilize the stack waste heat. Thus, to apply the waste heat produced through the stack to heating (hot water) and absorption cooling, proper distribution control of the thermal management fluid (cooling fluid) of the stack is essential. For the thermal management fluid control design, system analysis modeling was performed to selectively design the heat exchange amount of each part utilizing the stack waste heat. In addition, a thermal management system based on thermal storage was constructed for complementary waste heat utilization and active stack cooling control. Through a coupled analysis of the stack thermal management model and the absorption cooling system model, this study compared changes in system performance by cooling cycle operation conditions. This study investigated into the appropriate operating conditions for cooling operation in a tri-generative system using a high-temperature PEMFC stack.


1989 ◽  
Vol 19 (3) ◽  
pp. 211-229 ◽  
Author(s):  
Robert N. Amundsen ◽  
John D. Keenan

1989 ◽  
Vol 19 (2) ◽  
pp. 95-114 ◽  
Author(s):  
John D. Keenan ◽  
Robert N. Amundsen

Sign in / Sign up

Export Citation Format

Share Document