Improving Power Quality in Low-Voltage Networks Containing Distributed Energy Resources

2013 ◽  
Vol 14 (1) ◽  
pp. 67-78 ◽  
Author(s):  
Sumit Mazumder ◽  
Arindam Ghosh ◽  
Firuz Zare

Abstract Severe power quality problems can arise when a large number of single-phase distributed energy resources (DERs) are connected to a low-voltage power distribution system. Due to the random location and size of DERs, it may so happen that a particular phase generates excess power than its load demand. In such an event, the excess power will be fed back to the distribution substation and will eventually find its way to the transmission network, causing undesirable voltage–current unbalance. As a solution to this problem, the article proposes the use of a distribution static compensator (DSTATCOM), which regulates voltage at the point of common coupling (PCC), thereby ensuring balanced current flow from and to the distribution substation. Additionally, this device can also support the distribution network in the absence of the utility connection, making the distribution system work as a microgrid. The proposals are validated through extensive digital computer simulation studies using PSCADTM.

Electronics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1959
Author(s):  
Chathurika Chandraratne ◽  
Thaiyal Naayagi Ramasamy ◽  
Thillainathan Logenthiran ◽  
Gayadhar Panda

The microgrid includes a distribution system with low voltage, controllable load, and distributed energy resources (DER). The DERs have been increased in the recent power network to address global environmental concerns, which creates challenges in faults, synchronization, inertia control, etc. As the technologies are getting advanced day by day, the past technology becomes obsolete. The internet of things (IoT) and artificial intelligence (AI) are the most discussed topics to obtain solutions for the challenges. One of the proposed solutions is adaptive overcurrent protection, as it can be used for any grid. In this paper, an algorithm is developed for the adaptive overcurrent relay protection to overcome the challenges of the microgrid with distributed energy resources. Then, the solutions obtained from the adaptive overcurrent protection algorithm network simulation are compared to the traditional overcurrent protection algorithm using the four key points such as selectivity, reliability, sensitivity, and speed to have a good performance in the power network. All the simulation studies are done in the electrical transient analyzer program (ETAP) software environment. Simulation results validate the performance of the proposed algorithm for adaptive protection using the IEEE-9 bus system with a microgrid.


2021 ◽  
Author(s):  
Jone Ugarte Valdivielso ◽  
Abel Thomas ◽  
Jayakrishnan Radhakrishnan Pillai ◽  
Sanjay K Chaudhary

Energies ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 390 ◽  
Author(s):  
Anna Di Fazio ◽  
Mario Russo ◽  
Michele De Santis

This paper deals with the problem of the voltage profile optimization in a distribution system including distributed energy resources. Adopting a centralized approach, the voltage optimization is a non-linear programming problem with large number of variables requiring a continuous remote monitoring and data transmission from/to loads and distributed energy resources. In this study, a recently-proposed Jacobian-based linear method is used to model the steady-state operation of the distribution network and to divide the network into voltage control zones so as to reformulate the centralized optimization as a quadratic programming of reduced dimension. New clustering methods for the voltage control zone definition are proposed to consider the dependence of the nodal voltages on both active and reactive powers. Zoning methodologies are firstly tested on a 24-nodes low voltage network and, then, applied to the voltage optimization problem with the aim of analyzing the impact of the R/X ratios on the zone evaluation and on the voltage optimization solution.


Energies ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2760 ◽  
Author(s):  
Guido Cavraro ◽  
Tommaso Caldognetto ◽  
Ruggero Carli ◽  
Paolo Tenti

This paper proposes a technique to control distributed energy resources in low-voltage microgrids aiming at (i) allowing power flow control at the point of connection with the upstream grid, (ii) keeping voltage profiles within the operational limits. The first feature is crucial in smart low-voltage power systems. In fact, it enables both demand-responses, which is extremely valuable from the point of view of distribution system operators and for energy trading, and the autonomous operation of the microgrid. The latter can be achieved by regulating to zero the power exchanged with the main grid. The second feature allows to limit voltage increases due to active power injection by distributed energy resources and, thus, to limit stresses on the electrical infrastructure and the served loads, which is a concrete issue as renewables become widely deployed in the low-voltage scenario. The proposed approach is firstly described in detail, then a systematic analysis of its local and global properties is reported. All the obtained results are verified considering the IEEE 37 test feeder in realistic operating conditions.


Author(s):  
Marija Markovic ◽  
Amirhossein Sajadi ◽  
Anthony Florita ◽  
Robert Cruickshank III ◽  
Bri-Mathias Hodge

Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4073 ◽  
Author(s):  
Karim L. Anaya ◽  
Michael G. Pollitt

This paper identifies and explores regulatory issues that may have an impact on the use of flexibility services by distribution utilities to solve grid constraints. This can be done by flexible distributed energy resources which can be instructed, for instance, to reduce export generating capacity or increasing consumption. We want to identify how regulation can better support the development of the future distribution utility in its role as neutral market facilitator, enabling more competition in local flexibility markets and optimal use of resources. A set of questionnaires were designed to capture the insights around important aspects of the regulation of flexibility markets (utilities’ network incentives, network tariff structure, market design for flexibility markets, etc.). These were sent to distribution utilities, energy regulators, energy marketplaces, energy associations and relevant experts from seven jurisdictions. The responses suggest a collective interest in the procurement of flexibility services by distribution utilities from distributed energy resources. New regulations, the adaptation of current rules and recent consultations reflect this. However, the amount of progress with and preferences for key regulatory changes differ across jurisdictions.


Sign in / Sign up

Export Citation Format

Share Document