A Novel Non-Linear Control for Three-Phase Five-Level Cascaded H-Bridge Inverter Based Shunt Active Power Filter

Author(s):  
Soumyadeep Ray ◽  
Nitin Gupta ◽  
Ram Avtar Gupta

Abstract Cascaded H-Bridge multilevel inverter (CHB-MLI) based shunt active power filter (SAPF) provides a cost-worthy and realistic solution for mitigating current related power quality problems in case of medium-voltage and high-power grid. Mitigation of current harmonic component, reactive power minimization and power factor correction depend on accuracy of control technique applied to the CHB-MLI based SAPF unit. Switching technique dynamics is not considered by most of the researchers while designing control techniques applied to SAPF unit and hence it is assumed linear in order to make system simpler. A limited amount of literature is available which considers the non-linearity of CHB-MLI switching pattern while designing control theory for MLI based SAPF. Therefore, a novel non-linear control is proposed in this paper to enhance system steady-state and dynamic performance. This non-linear control is based on dynamic mathematical modeling of five-level CHB-MLI tied SAPF. Stability of proposed control strategy applied to CHB-MLI based SAPF is rigorously checked by using Lyapunov’s direct method. Proportional-Integral controller is used for stabilizing DC-link voltages to its proper reference value. This proposed control exhibits excellent dynamic performance and compensation criteria in comparison to conventional control techniques available in the literature. The effectiveness of the proposed control theory is tested rigorously in MATLAB/Simulink and verified through hardware prototype under steady-state and transient operating conditions. Rigorous analysis from hardware and simulation results confirms that source current waveform is in compliance with IEEE-519 standard defined THD limit.

2012 ◽  
Vol 2 (3) ◽  
pp. 69-89 ◽  
Author(s):  
Rambir Singh ◽  
Asheesh K. Singh

This paper presents the design and analysis of an improved approximated simplest fuzzy logic controller (IASFLC). A cascade combination of simplest 4-rule fuzzy logic controller (FLC) and an nth degree polynomial is proposed as an IASFLC to approximate the control characteristics of a 49-rule FLC. The scheme is based on minimizing the sum of square errors between the control outputs of a 49-rule FLC and a simplest 4-rule FLC in the entire range of universe of discourse (UOD). The coefficients of compensating polynomial are evaluated by solving instantaneous square error equations at various test points in the entire UOD. This IASFLC maps the output of a 49-rule FLC with absolute deviation of less than 5%. The proposed IASFLC is used to control the dc link voltage of a three phase shunt active power filter (APF). A detailed analysis is performed during transient and steady state conditions to check power quality (PQ) and dynamic performance indices. The performance of proposed IASFLC is compared with a 49-rule FLC and approximated simplest fuzzy logic controller (ASFLC) based on minimization of the deviation at central values of membership functions (MFs). It is found comparatively better for harmonic and reactive compensation with a comparable dynamic response. The memory requirement and computational time of proposed IASFLC are less than the ASFLC.


Author(s):  
P. Thirumoorthi ◽  
Raheni T D

Power system harmonics are a menace to electric power system with disastrous consequence. Due to the presence of non linear load, power quality of the system gets affected.  To overcome this, shunt active power filter have been used near harmonic producing loads or at the point of common coupling to block current harmonics. The shunt active power filter is designed to minimize harmonics in source current and reactive power in the non linear power supplies which are creating harmonics. In this paper, Instantaneous power of p-q theory is employed to generate the reference currents and PI controller is used to control the dc link voltage. In addition to this, Artificial Intelligence (AI) technique is used to minimize the harmonics produced by nonlinear load. The main objective of this paper is to analyze and compare THD of the source current with PI controller and by artificial neural network based back propagation algorithm. The proposed system is designed with MATLAB/SIMULINK environment.


2019 ◽  
Vol 11 (12-SPECIAL ISSUE) ◽  
pp. 1193-1204 ◽  
Author(s):  
G. Boopathy ◽  
Dr.M. Siva Ramkumar ◽  
Dr.A. Amudha ◽  
Dr. Viyathukattuva ◽  
Dr.G. Emayavaramban ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document