Chaotic Contact Dynamics of Two Microbeams under Various Kinematic Hypotheses

Author(s):  
V.A. Krysko ◽  
J. Awrejcewicz ◽  
I.V. Papkova ◽  
O.A. Saltykova ◽  
A.V. Krysko

AbstractDifferent kinematic mathematical models of nonlinear dynamics of a contact interaction of two microbeams are derived and studied. Dynamics of one of the microbeams is governed by kinematic hypotheses of the first, second, and third approximation orders. The second beam is excited through a contact interaction with the first beam and is described by the kinematic hypothesis of the second-order approximation in both geometric linear and nonlinear frameworks. The derived nonlinear partial differential equations (PDEs) are transformed to the counterpart system of nonlinear ordinary differential equations (ODEs) by the finite difference method. Nonlinear contact interaction dynamics of the microbeam structure is analyzed with the help of time series (signals), Fourier spectra, and wavelet spectra based on various mother wavelets, Morlet wavelet spectra employed to study synchronization phenomena, Poincaré maps, phase portraits, and the Lyapunov exponents estimated with the Wolf, Kantz, and Rosenstein algorithms. We have illustrated that neglecting the shear function (Euler–Bernoulli model) yields erroneous numerical results. We have shown that the geometric nonlinearity cannot be neglected in the analysis even for small two-layer microbeam deflection. In addition, we have detected that the contact between two microbeams takes place in the vicinity of x \approx 0.2 and x \approx 0.8 instead of the beams central points.

Filomat ◽  
2018 ◽  
Vol 32 (9) ◽  
pp. 3347-3354 ◽  
Author(s):  
Nematollah Kadkhoda ◽  
Michal Feckan ◽  
Yasser Khalili

In the present article, a direct approach, namely exp(-?)-expansion method, is used for obtaining analytical solutions of the Pochhammer-Chree equations which have a many of models. These solutions are expressed in exponential functions expressed by hyperbolic, trigonometric and rational functions with some parameters. Recently, many methods were attempted to find exact solutions of nonlinear partial differential equations, but it seems that the exp(-?)-expansion method appears to be efficient for finding exact solutions of many nonlinear differential equations.


Author(s):  
Wei Tan ◽  
Zhao-Yang Yin

Abstract The parameter limit method on the basis of Hirota’s bilinear method is proposed to construct the rogue wave solutions for nonlinear partial differential equations (NLPDEs). Some real and complex differential equations are used as concrete examples to illustrate the effectiveness and correctness of the described method. The rogue waves and homoclinic solutions of different structures are obtained and simulated by three-dimensional graphics, respectively. More importantly, we find that rogue wave solutions and homoclinic solutions appear in pairs. That is to say, for some NLPDEs, if there is a homoclinic solution, then there must be a rogue wave solution. The twin phenomenon of rogue wave solutions and homoclinic solutions of a class of NLPDEs is discussed.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Robert Stegliński

Abstract The aim of this paper is to extend results from [A. Cañada, J. A. Montero and S. Villegas, Lyapunov inequalities for partial differential equations, J. Funct. Anal. 237 (2006), 1, 176–193] about Lyapunov-type inequalities for linear partial differential equations to nonlinear partial differential equations with 𝑝-Laplacian with zero Neumann or Dirichlet boundary conditions.


Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 545-554
Author(s):  
Asghar Ali ◽  
Aly R. Seadawy ◽  
Dumitru Baleanu

AbstractThis article scrutinizes the efficacy of analytical mathematical schemes, improved simple equation and exp(-\text{Ψ}(\xi ))-expansion techniques for solving the well-known nonlinear partial differential equations. A longitudinal wave model is used for the description of the dispersion in the circular rod grounded via transverse Poisson’s effect; similarly, the Boussinesq equation is used for extensive wave propagation on the surface of water. Many other such types of equations are also solved with these techniques. Hence, our methods appear easier and faster via symbolic computation.


Sign in / Sign up

Export Citation Format

Share Document