Distributed consensus of multi-agent systems with increased convergence rate

Author(s):  
Ke-cai Cao ◽  
Yun Chai ◽  
Chenglin Liu

AbstractConsensus problem with faster convergence rate of consensus problem has been considered in this paper. Adding more edges such as that connecting each agent and its second-nearest neighbor or changing the consensus protocol such as mixing asymptotic terms and terms of finite-time has been proved to be possible ways in increasing the convergence rate of multi-agent system in this paper. Based on analysis of Laplacian matrix, increasing of the convergence rate has been proved using the second-smallest eigenvalue for the first method. Concerning the second method, advantages of asymptotic consensus protocol and finite-time consensus protocol have been mixed together with the help of homogeneity function and theory of Lyapunov. Simulation results using matlab are also presented to illustrate the newly designed consensus protocols in increasing the convergence rate.

2019 ◽  
Vol 13 (6) ◽  
pp. 755-762 ◽  
Author(s):  
Xiurong Chen ◽  
Juan Li ◽  
Ziku Wu ◽  
Jiashang Yu

Author(s):  
Yangzhou Chen ◽  
Guangyue Xu ◽  
Jingyuan Zhan

This paper studies the leader-following state consensus problem for heterogeneous linear multi-agent systems under fixed directed communication topologies. First, we propose a consensus protocol consisting of four parts for high-order multi-agent systems, in which different agents are allowed to have different gain matrices so as to increase the degree of design freedom. Then, we adopt a state linear transformation, which is constructed based on the incidence matrix of a directed spanning tree of the communication topology, to equivalently transform the state consensus problem into a partial variable stability problem. Meanwhile, the results of the partial variable stability theory are used to derive a sufficient and necessary consensus criterion, expressed as the Hurwitz stability of a real matrix. Then, this criterion is further expressed as a bilinear matrix inequality condition, and, based on this condition, an iterative algorithm is proposed to find the gain matrices of the protocol. Finally, numerical examples are provided to verify the effectiveness of the proposed protocol design method.


Symmetry ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1519 ◽  
Author(s):  
Rawad Abdulghafor ◽  
Sultan Almotairi ◽  
Hamad Almohamedh ◽  
Sherzod Turaev ◽  
Badr Almutairi

This article explores nonlinear convergence to limit the effects of the consensus problem that usually occurs in multi-agent systems. Most of the existing research essentially considers the outline of linear protocols, using complex mathematical equations in various orders. In this work, however, we designed and developed an alternative nonlinear protocol based on simple and effective mathematical approaches. The designed protocol in this sense was modified from the Doubly Stochastic Quadratic Operators (DSQO) and was aimed at resolving consensus problems. Therefore, we called it Modified Doubly Stochastic Quadratic Operators (MDSQO). The protocol was derived in the context of coordinated systems to overcome the consensus issue related to multi-agent systems. In the process, we proved that by using the proposed nonlinear protocol, the consensus could be reached via a common agreement among the agents (average consensus) in a fast and easy fashion without losing any initial status. Moreover, the investigated nonlinear protocol of MDSQO realized the reaching consensus always as well as DSQO in some cases, which could not reach consensus. Finally, simulation results were given to prove the validity of the theoretical analysis.


Author(s):  
Fang Wang ◽  
◽  
Xin Chen ◽  
Yong He ◽  

The finite-time consensus problem for double-integrator multi-agent systems (MASs) is studied using time-varying directed topologies. In detail, a distributed finite-time control protocol is designed to achieve the weighted average consensus on the basis of both relative position and relative velocity measurements by utilizing a homogeneous control technique. Then, on the basis of graph theory, homogeneity with dilation and LaSalle’s invariance principle, the designed finite-time consensus protocol ensures finite-time convergence to a consensus in the time-varying directed topologies without a global leader. Finally, some examples and simulation results are given to illustrate the effectiveness of the obtained theoretical results.


2014 ◽  
Vol 88 (2) ◽  
pp. 285-294 ◽  
Author(s):  
Yingjiang Zhou ◽  
Xinghuo Yu ◽  
Changyin Sun ◽  
Wenwu Yu

2016 ◽  
Vol 38 (12) ◽  
pp. 1434-1441 ◽  
Author(s):  
Hongjun Chu ◽  
Weidong Zhang

This paper addresses the consensus protocol design problem for linear multi-agent systems with input saturation. Existing consensus protocols usually contain certain global information, such as network size or the spectrum of the Laplacian matrix, and this global knowledge is often unavailable to all agents. In this paper, based on only the agent dynamics and the relative states of neighbouring agents, a novel adaptive consensus protocol is designed by assigning a time-varying coupling weight to each node. This protocol has two advantages: it is independent of any global information, and hence is fully distributed; and it is implemented by actuators with input saturation constraints. By combining the low-gain feedback method and appropriate Lyapunov techniques, it is shown that our protocol can achieve the semi-global consensus tracking in a fully distributed fashion, under the mild assumptions on agent dynamics and the topology graph. The results are illustrated by numerical simulations


2013 ◽  
Vol 2013 ◽  
pp. 1-11
Author(s):  
Zhengxin Wang ◽  
Yang Cao

This paper studies the consensus problem for a high-order multi-agent systems without or with delays. Consensus protocols, which only depend on the own partial information of agents and partial relative information with its neighbors, are proposed for consensus and quasi-consensus, respectively. Firstly, some lemmas are presented, and then a necessary and sufficient condition for guaranteeing the consensus is established under the consensus protocol without delays. Furthermore, communication delays are considered. Some necessary and sufficient conditions for solving quasi-consensus problem with delays are obtained. Finally, some simulations are given to verify the theoretical results.


2017 ◽  
Vol 40 (5) ◽  
pp. 1529-1537 ◽  
Author(s):  
Muhammad Iqbal ◽  
John Leth ◽  
Trung D Ngo

In this paper, we solve the leader-following consensus problem using a hierarchical nearly cyclic pursuit (HNCP) strategy for multi-agent systems. We extend the nearly cyclic pursuit strategy and the two-layer HNCP to the generalized L-layer HNCP that enables the agents to rendezvous at a point dictated by a beacon. We prove that the convergence rate of the generalized L-layer HNCP for the leader-following consensus problem is faster than that of the nearly cyclic pursuit. Simulation results demonstrate the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document