Discrete-Time Fractional Order SIR Epidemic Model with Saturated Treatment Function

Author(s):  
Mahmoud A. M. Abdelaziz ◽  
Ahmad Izani Ismail ◽  
Farah A. Abdullah ◽  
Mohd Hafiz Mohd

AbstractIn this paper, a discrete-time fractional-order SIR epidemic model with saturated treatment function is investigated. The local asymptotic stability of the equilibrium points is analyzed and the threshold condition basic reproduction number is derived. Backward bifurcation is shown when the model possesses a stable disease-free equilibrium point and a stable endemic point coexisting together when the basic reproduction number is less than unity. It is also shown that when the treatment is partially effective, a transcritical bifurcation occurs at $\Re_{0}=1$ and reappears again when the effect of delayed treatment is getting stronger at $\Re_{0}<1$. The analysis of backward and forward bifurcations associated with the transcritical, saddle-node, period-doubling and Neimark–Sacker bifurcations are discussed. Numerical simulations are carried out to illustrate the complex dynamical behaviors of the model. By carrying out bifurcation analysis, it is shown that the delayed treatment parameter ε should be less than two critical values ε1 and ε2 so as to avoid $\Re_{0}$ belonging to the dangerous range $\left[ \Re_{0},1\right]$. The results of the numerical simulations support the theoretical analysis.

2009 ◽  
Vol 2009 ◽  
pp. 1-17 ◽  
Author(s):  
Xiaohong Tian ◽  
Rui Xu

We investigate the stability of an SIR epidemic model with stage structure and time delay. By analyzing the eigenvalues of the corresponding characteristic equation, the local stability of each feasible equilibrium of the model is established. By using comparison arguments, it is proved when the basic reproduction number is less than unity, the disease free equilibrium is globally asymptotically stable. When the basic reproduction number is greater than unity, sufficient conditions are derived for the global stability of an endemic equilibrium of the model. Numerical simulations are carried out to illustrate the theoretical results.


2016 ◽  
Vol 2016 ◽  
pp. 1-18
Author(s):  
Xiangsen Liu ◽  
Binxiang Dai

An SIR epidemic model with saturated treatment function and nonlinear pulse vaccination is studied. The existence and stability of the disease-free periodic solution are investigated. The sufficient conditions for the persistence of the disease are obtained. The existence of the transcritical and flip bifurcations is considered by means of the bifurcation theory. The stability of epidemic periodic solutions is discussed. Furthermore, some numerical simulations are given to illustrate our results.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Yao Chen ◽  
Mei Yan ◽  
Zhongyi Xiang

A two-city SIR epidemic model with transport-related infections is proposed. Some good analytical results are given for this model. If the basic reproduction numberℜ0γ≤1, there exists a disease-free equilibrium which is globally asymptotically stable. There exists an endemic equilibrium which is locally asymptotically stable if the basic reproduction numberℜ0γ>1. We also show the permanence of this SIR model. In addition, sufficient conditions are established for global asymptotic stability of the endemic equilibrium.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Xiaodong Wang ◽  
Chunxia Wang ◽  
Kai Wang

AbstractIn this paper, we study a novel deterministic and stochastic SIR epidemic model with vertical transmission and media coverage. For the deterministic model, we give the basic reproduction number $R_{0}$ R 0 which determines the extinction or prevalence of the disease. In addition, for the stochastic model, we prove existence and uniqueness of the positive solution, and extinction and persistence in mean. Furthermore, we give numerical simulations to verify our results.


2021 ◽  
Author(s):  
Phuc Ngo

In this thesis we investigate the dynamics and bifurcation of SIR epidemic models with horizontal and vertical transmissions and saturated treatment rate. It is proved that such SIR epidemic models always have positive disease free equilibria and also have three positive epidemic equilibria. The ranges of the parameters related in the model were found under which the equilibria of the models are positive. By applying the qualitative theory of planar systems, it is shown the disease free equilibria is a saddle, stable node and globally asymptotically stable. Furthermore, it is also shown that the interior equilibria are saddle, saddle node or saddle point.


2021 ◽  
Author(s):  
Lan Meng ◽  
Wei Zhu

Abstract In this paper, an n-patch SEIR epidemic model for the coronavirus disease 2019 (COVID-19) is presented. It is shown that there is unique disease-free equilibrium for this model. Then, the dynamic behavior is studied by the basic reproduction number. Some numerical simulations with three patches are given to validate the effectiveness of the theoretical results. The influence of quarantined rate and population migration rate on the basic reproduction number is also discussed by simulation.


Sign in / Sign up

Export Citation Format

Share Document