Comparison of different time discretization schemes for solving the Allen–Cahn equation

Author(s):  
Sana Ayub ◽  
Abdul Rauf ◽  
Hira Affan ◽  
Abdullah Shah

Abstract This article aims to solve the nonlinear Allen–Cahn equation numerically. The diagonally implicit fractional-step θ-(DIFST) scheme is used for the discretization of the time derivative term while the space derivative is discretized by the conforming finite element method. The computational efficiency of the DIFST scheme in terms of CPU time and temporal error estimation is computed and compared with other time discretization schemes. Several test problems are presented to show the effectiveness of the DIFST scheme.

2021 ◽  
Vol 11 (5) ◽  
pp. 85-91
Author(s):  
Jesús Miguel Sánchez Gil ◽  
Tom-Robin Teschner ◽  
László Könözsy

Commercial and open-source CFD solvers rely mostly on incompressible approximate projection methods to overcome the pressure-velocity decoupling, such as the SIMPLE (Patankar, 1980) or PISO (Issa, 1986) algorithm. Incompressible methods based on the Artificial Compressibility method (Chorin, 1967) lack a mechanism to evolve in time and need to be supplemented by a real time derivative through the dual time scheme. The current study investigates the implementation of the explicit dual time discretization of the Artificial Compressibility method into OpenFOAM and extends on that by applying the dual time scheme to the incompressible FSAC-PP method (Könözsy, 2012). Applied to the Couette 2D flow at Re=100 and Re=1000, results show that for both methods accurate time evolutions of the velocity profiles are presented, where the FSAC-PP methods seemingly produces smoother profiles compared to the AC method, especially during the start-up of the simulation.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Haili Qiao ◽  
Aijie Cheng

AbstractIn this paper, we consider the time fractional diffusion equation with Caputo fractional derivative. Due to the singularity of the solution at the initial moment, it is difficult to achieve an ideal convergence rate when the time discretization is performed on uniform meshes. Therefore, in order to improve the convergence order, the Caputo time fractional derivative term is discretized by the {L2-1_{\sigma}} format on non-uniform meshes, with {\sigma=1-\frac{\alpha}{2}}, while the spatial derivative term is approximated by the classical central difference scheme on uniform meshes. According to the summation formula of positive integer k power, and considering {k=3,4,5}, we propose three non-uniform meshes for time discretization. Through theoretical analysis, different time convergence orders {O(N^{-\min\{k\alpha,2\}})} can be obtained, where N denotes the number of time splits. Finally, the theoretical analysis is verified by several numerical examples.


2014 ◽  
Vol 14 (2) ◽  
pp. 203-230 ◽  
Author(s):  
Dominik Meidner ◽  
Thomas Richter

Abstract. In this work, we derive a goal-oriented a posteriori error estimator for the error due to time-discretization of nonlinear parabolic partial differential equations by the fractional step theta method. This time-stepping scheme is assembled by three steps of the general theta method, that also unifies simple schemes like forward and backward Euler as well as the Crank–Nicolson method. Further, by combining three substeps of the theta time-stepping scheme, the fractional step theta time-stepping scheme is derived. It possesses highly desired stability and numerical dissipation properties and is second order accurate. The derived error estimator is based on a Petrov–Galerkin formulation that is up to a numerical quadrature error equivalent to the theta time-stepping scheme. The error estimator is assembled as one weighted residual term given by the dual weighted residual method and one additional residual estimating the Galerkin error between time-stepping scheme and Petrov–Galerkin formulation.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Shazalina Mat Zin ◽  
Ahmad Abd Majid ◽  
Ahmad Izani Md. Ismail ◽  
Muhammad Abbas

The generalized nonlinear Klien-Gordon equation is important in quantum mechanics and related fields. In this paper, a semi-implicit approach based on hybrid cubic B-spline is presented for the approximate solution of the nonlinear Klien-Gordon equation. The usual finite difference approach is used to discretize the time derivative while hybrid cubic B-spline is applied as an interpolating function in the space dimension. The results of applications to several test problems indicate good agreement with known solutions.


2019 ◽  
Vol 29 (1) ◽  
pp. 012101
Author(s):  
Konstantin Fackeldey ◽  
Péter Koltai ◽  
Peter Névir ◽  
Henning Rust ◽  
Axel Schild ◽  
...  

2006 ◽  
Vol 16 (10) ◽  
pp. 1559-1598 ◽  
Author(s):  
ALFREDO BERMÚDEZ ◽  
RODOLFO RODRÍGUEZ ◽  
DUARTE SANTAMARINA

This paper deals with a time-domain mathematical model for dissipative acoustics and is organized as follows. First, the equations of this model are written in terms of displacement and temperature fields and an energy equation is obtained. The resulting initial-boundary value problem is written in a functional framework allowing us to prove the existence and uniqueness of solution. Next, two different time-discretization schemes are proposed, and stability and error estimates are proved for both. Finally, numerical results are reported which were obtained by combining these time-schemes with Lagrangian and Raviart–Thomas finite elements for temperature and displacement fields, respectively.


Sign in / Sign up

Export Citation Format

Share Document