Adaptive neural network control of second-order underactuated systems with prescribed performance constraints

Author(s):  
Can Ding ◽  
Jing Zhang ◽  
Yingjie Zhang ◽  
Zhe Zhang

Abstract This paper studies the trajectory tracking control problem of second-order underactuated system subject to system uncertainties and prescribed performance constraints. By combining radial basis function neural networks (RBFNNs) with input–output linearization methods, an adaptive neural network-based control approach is proposed and the adaptive laws are given through Lyapunov method and Taylor expansion linearization approach. The main contributions of this paper are that: (1) by introducing weight performance function and transformation function, the states never violate the prescribed performance constraints; (2) the control scheme takes the unknown control gain direction into consideration and the singular problem of control design can be avoided; (3) through rigorously stability analysis, all signal of closed-loop system are proved to be uniformly ultimately bounded. The effectiveness of the proposed control scheme was verified by comparative simulation.

Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Hongjun Yang ◽  
Zhijie Liu ◽  
Shuang Zhang

This paper investigates a single parameter adaptive neural network control method for unknown nonlinear systems with bounded external disturbances. A smooth performance function is developed to achieve the transient and steady state of system tracking error that could be constrained in prescribed bounds. The difficulties in dealing with unknown system parameters and disturbances of nonlinear systems are resolved based on the single parameter adaptive neural network control which is proposed to effectively reduce the calculation amount. The theoretical analysis implies that the proposed control scheme makes the closed-loop system uniformly ultimately bounded. Simulation demonstrates that the proposed adaptive controller gives a favorable performance on tracking desired signal and constraining the bounds of tracking error which could be arbitrarily small with appropriate adaptive parameters. Both the theoretical analysis and simulations confirm the effectiveness of the control scheme.


Sign in / Sign up

Export Citation Format

Share Document