On nonlinear mixed fractional integrodifferential equations with nonlocal condition in Banach spaces

2014 ◽  
Vol 20 (2) ◽  
Author(s):  
S. D. Kendre ◽  
V. V. Kharat

AbstractIn the present paper we investigate the existence and uniqueness of solutions of nonlinear mixed fractional integrodifferential equations with nonlocal condition in Banach spaces. The technique used in our analysis is based on fixed point theorems and Pachpatte's integral inequality.

2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Saïd Abbas ◽  
Mouffak Benchohra ◽  
Nadjet Laledj ◽  
Yong Zhou

AbstractThis paper deals with some existence, uniqueness and Ulam–Hyers–Rassias stability results for a class of implicit fractional q-difference equations. Some applications are made of some fixed point theorems in Banach spaces for the existence and uniqueness of solutions, next we prove that our problem is generalized Ulam–Hyers–Rassias stable. Two illustrative examples are given in the last section.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Sliman Mekki ◽  
Tayeb Blouhi ◽  
Juan J. Nieto ◽  
Abdelghani Ouahab

Abstract In this paper we study a class of impulsive systems of stochastic differential equations with infinite Brownian motions. Sufficient conditions for the existence and uniqueness of solutions are established by mean of some fixed point theorems in vector Banach spaces. An example is provided to illustrate the theory.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Saïd Abbas ◽  
Mouffak Benchohra ◽  
Bessem Samet ◽  
Yong Zhou

AbstractThis paper deals with some existence, uniqueness, and Ulam stability results for a coupled implicit Caputo fractional q-difference system in Banach and generalized Banach spaces. Some applications are made of some fixed point theorems for the existence and uniqueness of solutions. Next we prove that our problem is generalized Ulam–Hyers–Rassias stable. Some illustrative examples are given in the last section.


Author(s):  
Anna Gąsior ◽  
Andrzej Szczepański

Abstract This paper investigates the problem of the existence and uniqueness of solutions under the generalized self-similar forms to the space-fractional diffusion equation. Therefore, through applying the properties of Schauder’s and Banach’s fixed point theorems; we establish several results on the global existence and blow-up of generalized self-similar solutions to this equation.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
N. I. Mahmudov ◽  
S. Unul

Existence and uniqueness of solutions forα∈(2,3]order fractional differential equations with three-point fractional boundary and integral conditions involving the nonlinearity depending on the fractional derivatives of the unknown function are discussed. The results are obtained by using fixed point theorems. Two examples are given to illustrate the results.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Yiliang Liu ◽  
Liang Lu

We study a class of nonlinear fractional integrodifferential equations withp-Laplacian operator in Banach space. Some new existence results are obtained via fixed point theorems for nonlocal boundary value problems of fractionalp-Laplacian equations. An illustrative example is also discussed.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Lihong Zhang ◽  
Bashir Ahmad ◽  
Guotao Wang

We show the existence and uniqueness of solutions for an antiperiodic boundary value problem of nonlinear impulsiveqk-difference equations by applying some well-known fixed point theorems. An example is presented to illustrate the main results.


2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Zhanfei Zuo

We define a mean nonexpansive mappingTonXin the sense thatTx-Ty≤ax-y+bx-Ty,a,b≥0,a+b≤1. It is proved that mean nonexpansive mapping has approximate fixed-point sequence, and, under some suitable conditions, we get some existence and uniqueness theorems of fixed point.


Sign in / Sign up

Export Citation Format

Share Document