Regularization of ill-posed problems by using stabilizers in the form of the total variation of a function and its derivatives

2016 ◽  
Vol 24 (2) ◽  
Author(s):  
Vladimir V. Vasin

AbstractUnder the assumption that the solution of a linear operator equation is presented in the form of a sum of several components with various smoothness properties, a modified Tikhonov regularization method is studied. The stabilizer of this method is the sum of three functionals, where each one corresponds to only one component. Each such functional is either the total variation of a function or the total variation of its derivative. For every component, the convergence of approximate solutions in a corresponding normed space is proved and a general discrete approximation scheme for the regularizing algorithm is justified.

Author(s):  
Vladimir Vasin ◽  
◽  
Vladimir Belyaev

We investigate a linear operator equation of the first kind that is ill-posed in the Hadamard sence. It is assumed that its solution is representable as a sum of smooth and discontinuous components. To construct a stable approximate solutions, we use the modified Tikhonov method with the stabilizing functional as a sum of the Lebesgue norm for the smooth component and a smoothed BV-norm for the discontinuous component. Theorems of exis- tence, uniqueness, and convergence both the regularized solutions and its finite-dimentional approximations are proved. Also, results of numerical experiments are presented.


Author(s):  
Bechouat Tahar ◽  
Boussetila Nadjib ◽  
Rebbani Faouzia

In this paper, we report on a strategy for computing the numerical approximate solution for a class of ill-posed operator equations in Hilbert spaces: [Formula: see text]. This approach is a combination of Tikhonov regularization method and the finite rank approximation of [Formula: see text]. Finally, numerical results are given to show the effectiveness of this method.


2020 ◽  
Vol 18 (1) ◽  
pp. 1685-1697
Author(s):  
Zhenyu Zhao ◽  
Lei You ◽  
Zehong Meng

Abstract In this paper, a Cauchy problem for the Laplace equation is considered. We develop a modified Tikhonov regularization method based on Hermite expansion to deal with the ill posed-ness of the problem. The regularization parameter is determined by a discrepancy principle. For various smoothness conditions, the solution process of the method is uniform and the convergence rate can be obtained self-adaptively. Numerical tests are also carried out to verify the effectiveness of the method.


2013 ◽  
Vol 416-417 ◽  
pp. 1393-1398
Author(s):  
Chao Zhong Ma ◽  
Yong Wei Gu ◽  
Ji Fu ◽  
Yuan Lu Du ◽  
Qing Ming Gui

In a large number of measurement data processing, the ill-posed problem is widespread. For such problems, this paper introduces the solution of ill-posed problem of the unity of expression and Tikhonov regularization method, and then to re-collinearity diagnostics and metrics based on proposed based on complex collinearity diagnostics and the metric regularization method is given regularization matrix selection methods and regularization parameter determination formulas. Finally, it uses a simulation example to verify the effectiveness of the method.


2011 ◽  
Vol 2011 ◽  
pp. 1-14 ◽  
Author(s):  
Fan Yang ◽  
HengZhen Guo ◽  
XiaoXiao Li

This paper discusses the problem of determining an unknown source which depends only on one variable for the modified Helmholtz equation. This problem is ill-posed in the sense that the solution (if it exists) does not depend continuously on the data. The regularization solution is obtained by the simplified Tikhonov regularization method. Convergence estimate is presented between the exact solution and the regularization solution. Moreover, numerical results are presented to illustrate the accuracy and efficiency of this method.


2020 ◽  
Vol 28 (1) ◽  
pp. 181-204
Author(s):  
Nabil Saouli ◽  
Fairouz Zouyed

AbstractThis paper deals with the problem of determining an unknown source and an unknown initial condition in a abstract final value parabolic problem. This problem is ill-posed in the sense that the solutions do not depend continuously on the data. To solve the considered problem a modified Tikhonov regularization method is proposed. Using this method regularized solutions are constructed and under boundary conditions assumptions, convergence estimates between the exact solutions and their regularized approximations are obtained. Moreover numerical results are presented to illustrate the accuracy and efficiency of the proposed method.


2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Songshu Liu ◽  
Lixin Feng

In this paper we investigate a Cauchy problem of two-dimensional (2D) heat conduction equation, which determines the internal surface temperature distribution from measured data at the fixed location. In general, this problem is ill-posed in the sense of Hadamard. We propose a revised Tikhonov regularization method to deal with this ill-posed problem and obtain the convergence estimate between the approximate solution and the exact one by choosing a suitable regularization parameter. A numerical example shows that the proposed method works well.


2020 ◽  
Vol 20 (3) ◽  
pp. 555-571
Author(s):  
Suhua Yang ◽  
Xingjun Luo ◽  
Chunmei Zeng ◽  
Zhihai Xu ◽  
Wenyu Hu

AbstractIn this paper, we apply the multilevel augmentation method for solving ill-posed Fredholm integral equations of the first kind via iterated Tikhonov regularization method. The method leads to fast solutions of the discrete regularization methods for the equations. The convergence rates of iterated Tikhonov regularization are achieved by using a modified parameter choice strategy. Finally, numerical experiments are given to illustrate the efficiency of the method.


2020 ◽  
Vol 62 (3) ◽  
pp. 302-317
Author(s):  
A. Y. IVANITSKIY ◽  
V. V. EJOV ◽  
F. P. VASILYEV

AbstractWe propose a variation of the pointwise residual method for solving primal and dual ill-posed linear programming with approximate data, sensitive to small perturbations. The method leads to an auxiliary problem, which is also a linear programming problem. Theorems of existence and convergence of approximate solutions are established and optimal estimates of approximation of initial problem solutions are achieved.


Sign in / Sign up

Export Citation Format

Share Document