Accuracy estimates of regularization methods and conditional well-posedness of nonlinear optimization problems

2018 ◽  
Vol 26 (6) ◽  
pp. 789-797
Author(s):  
Mikhail Y. Kokurin

Abstract We investigate the nonlinear minimization problem on a convex closed set in a Hilbert space. It is shown that the uniform conditional well-posedness of a class of problems with weakly lower semicontinuous functionals is the necessary and sufficient condition for existence of regularization procedures with accuracy estimates uniform on this class. We also establish a necessary and sufficient condition for the existence of regularizing operators which do not use information on the error level in input data. Similar results were previously known for regularization procedures of solving ill-posed inverse problems.

1982 ◽  
Vol 25 (1) ◽  
pp. 29-36
Author(s):  
L. L. Campbell

AbstractThe Dirichlet problem is examined for the vibrating string equation on a rectangle with commensurable sides. As is well-known, a solution, if it exists, is not unique. A necessary and sufficient condition is obtained on the boundary values for existence of solutions. A simple formula for the solution is obtained.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Chulan Zeng

<p style='text-indent:20px;'>In this paper, we investigate the pointwise time analyticity of three differential equations. They are the biharmonic heat equation, the heat equation with potentials and some nonlinear heat equations with power nonlinearity of order <inline-formula><tex-math id="M1">\begin{document}$ p $\end{document}</tex-math></inline-formula>. The potentials include all the nonnegative ones. For the first two equations, we prove if <inline-formula><tex-math id="M2">\begin{document}$ u $\end{document}</tex-math></inline-formula> satisfies some growth conditions in <inline-formula><tex-math id="M3">\begin{document}$ (x,t)\in \mathrm{M}\times [0,1] $\end{document}</tex-math></inline-formula>, then <inline-formula><tex-math id="M4">\begin{document}$ u $\end{document}</tex-math></inline-formula> is analytic in time <inline-formula><tex-math id="M5">\begin{document}$ (0,1] $\end{document}</tex-math></inline-formula>. Here <inline-formula><tex-math id="M6">\begin{document}$ \mathrm{M} $\end{document}</tex-math></inline-formula> is <inline-formula><tex-math id="M7">\begin{document}$ R^d $\end{document}</tex-math></inline-formula> or a complete noncompact manifold with Ricci curvature bounded from below by a constant. Then we obtain a necessary and sufficient condition such that <inline-formula><tex-math id="M8">\begin{document}$ u(x,t) $\end{document}</tex-math></inline-formula> is analytic in time at <inline-formula><tex-math id="M9">\begin{document}$ t = 0 $\end{document}</tex-math></inline-formula>. Applying this method, we also obtain a necessary and sufficient condition for the solvability of the backward equations, which is ill-posed in general.</p><p style='text-indent:20px;'>For the nonlinear heat equation with power nonlinearity of order <inline-formula><tex-math id="M10">\begin{document}$ p $\end{document}</tex-math></inline-formula>, we prove that a solution is analytic in time <inline-formula><tex-math id="M11">\begin{document}$ t\in (0,1] $\end{document}</tex-math></inline-formula> if it is bounded in <inline-formula><tex-math id="M12">\begin{document}$ \mathrm{M}\times[0,1] $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M13">\begin{document}$ p $\end{document}</tex-math></inline-formula> is a positive integer. In addition, we investigate the case when <inline-formula><tex-math id="M14">\begin{document}$ p $\end{document}</tex-math></inline-formula> is a rational number with a stronger assumption <inline-formula><tex-math id="M15">\begin{document}$ 0&lt;C_3 \leq |u(x,t)| \leq C_4 $\end{document}</tex-math></inline-formula>. It is also shown that a solution may not be analytic in time if it is allowed to be <inline-formula><tex-math id="M16">\begin{document}$ 0 $\end{document}</tex-math></inline-formula>. As a lemma, we obtain an estimate of <inline-formula><tex-math id="M17">\begin{document}$ \partial_t^k \Gamma(x,t;y) $\end{document}</tex-math></inline-formula> where <inline-formula><tex-math id="M18">\begin{document}$ \Gamma(x,t;y) $\end{document}</tex-math></inline-formula> is the heat kernel on a manifold, with an explicit estimation of the coefficients.</p><p style='text-indent:20px;'>An interesting point is that a solution may be analytic in time even if it is not smooth in the space variable <inline-formula><tex-math id="M19">\begin{document}$ x $\end{document}</tex-math></inline-formula>, implying that the analyticity of space and time can be independent. Besides, for general manifolds, space analyticity may not hold since it requires certain bounds on curvature and its derivatives.</p>


2003 ◽  
Vol 2003 (39) ◽  
pp. 2455-2463 ◽  
Author(s):  
Raghib Abu-Saris ◽  
Wajdi Ahmad

Akth-order linear difference equation with constant coefficients subject to boundary conditions is considered. A necessary and sufficient condition for the existence of a unique solution for such a boundary value problem is established. The condition established answers a fundamental question for well-posedness and can be easily applied using a simple and computationally tractable algorithm that does not require finding the roots of the associated characteristic equation.


Mathematics ◽  
2019 ◽  
Vol 7 (7) ◽  
pp. 624
Author(s):  
Soon-Mo Jung ◽  
Doyun Nam

We present the necessary and sufficient conditions that the intersection of an open set and a closed set becomes either an open set or a closed set. As their dualities, we further introduce the necessary and sufficient conditions that the union of a closed set and an open set becomes either a closed set or an open set. Moreover, we give some necessary and sufficient conditions for the validity of U ∘ ∪ V ∘ = ( U ∪ V ) ∘ and U ¯ ∩ V ¯ = U ∩ V ¯ . Finally, we introduce a necessary and sufficient condition for an open subset of a closed subspace of a topological space to be open. As its duality, we also give a necessary and sufficient condition for a closed subset of an open subspace to be closed.


2003 ◽  
Vol 17 (3) ◽  
pp. 257-266 ◽  
Author(s):  
Mark H. Taylor ◽  
F. Todd DeZoort ◽  
Edward Munn ◽  
Martha Wetterhall Thomas

This paper introduces an auditor reliability framework that repositions the role of auditor independence in the accounting profession. The framework is motivated in part by widespread confusion about independence and the auditing profession's continuing problems with managing independence and inspiring public confidence. We use philosophical, theoretical, and professional arguments to argue that the public interest will be best served by reprioritizing professional and ethical objectives to establish reliability in fact and appearance as the cornerstone of the profession, rather than relationship-based independence in fact and appearance. This revised framework requires three foundation elements to control subjectivity in auditors' judgments and decisions: independence, integrity, and expertise. Each element is a necessary but not sufficient condition for maximizing objectivity. Objectivity, in turn, is a necessary and sufficient condition for achieving and maintaining reliability in fact and appearance.


Author(s):  
Thomas Sinclair

The Kantian account of political authority holds that the state is a necessary and sufficient condition of our freedom. We cannot be free outside the state, Kantians argue, because any attempt to have the “acquired rights” necessary for our freedom implicates us in objectionable relations of dependence on private judgment. Only in the state can this problem be overcome. But it is not clear how mere institutions could make the necessary difference, and contemporary Kantians have not offered compelling explanations. A detailed analysis is presented of the problems Kantians identify with the state of nature and the objections they face in claiming that the state overcomes them. A response is sketched on behalf of Kantians. The key idea is that under state institutions, a person can make claims of acquired right without presupposing that she is by nature exceptional in her capacity to bind others.


Sign in / Sign up

Export Citation Format

Share Document