Identification of the interface between acoustic and elastic waves from internal measurements

2020 ◽  
Vol 28 (3) ◽  
pp. 313-322
Author(s):  
Yanli Cui ◽  
Fenglong Qu

AbstractConsider the fluid-solid interaction problem for a two-layered non-penetrable cavity. We provide a novel fundamental proof for a uniqueness theorem on the determination of the interface between acoustic and elastic waves from many internal measurements, disregarding the boundary conditions imposed on the exterior non-penetrable boundary. The proof depends on a uniform {H^{1}}-norm boundedness for the elastic wave fields and the construction of the coupled interior transmission problem related to the acoustic and elastic wave fields.

2019 ◽  
Vol 127 ◽  
pp. 02013 ◽  
Author(s):  
Vladimir Korochentsev ◽  
Jingwei Yin ◽  
Anastasiya Viland ◽  
Tatyana Lobova ◽  
Natalia Soshina

A theoretical model for the propagation of elastic waves of arbitrary wave sizes from 0.5 to 20 units in an ice layer has been developed. The calculation was based on Green’s function theory for Helmholtz equation. Special “directed” Green’s functions were introduced. They make it possible to anayze wave fields in closes volumes limited by different-angle impedances. The developed calculation algorithms allow one to anayze fields on medium-powered computers for 15 minutes. The suggested methods are capable of estimating elastic wave interactions with different impedances in bays, lakes and other volumes with limited wave sizes.


Author(s):  
Imene Aicha Djebour

The aim of this work is to show the local null controllability of a fluid-solid interaction system by using a distributed control located in the fluid. The fluid is modeled by the incompressible Navier-Stokes system with Navier slip boundary conditions and the rigid body is governed by the Newton laws. Our main result yields that we can drive the velocities of the fluid and of the structure to 0 and we can control exactly the position of the rigid body. One important ingredient consists in a new Carleman estimate for a linear fluid-rigid body system with Navier boundary conditions. This work is done without imposing any geometrical conditions on the rigid body.


2021 ◽  
Vol 11 (4) ◽  
pp. 1482
Author(s):  
Róbert Huňady ◽  
Pavol Lengvarský ◽  
Peter Pavelka ◽  
Adam Kaľavský ◽  
Jakub Mlotek

The paper deals with methods of equivalence of boundary conditions in finite element models that are based on finite element model updating technique. The proposed methods are based on the determination of the stiffness parameters in the section plate or region, where the boundary condition or the removed part of the model is replaced by the bushing connector. Two methods for determining its elastic properties are described. In the first case, the stiffness coefficients are determined by a series of static finite element analyses that are used to obtain the response of the removed part to the six basic types of loads. The second method is a combination of experimental and numerical approaches. The natural frequencies obtained by the measurement are used in finite element (FE) optimization, in which the response of the model is tuned by changing the stiffness coefficients of the bushing. Both methods provide a good estimate of the stiffness at the region where the model is replaced by an equivalent boundary condition. This increases the accuracy of the numerical model and also saves computational time and capacity due to element reduction.


2021 ◽  
Vol 11 (7) ◽  
pp. 3124
Author(s):  
Alya Alhammadi ◽  
Jin-You Lu ◽  
Mahra Almheiri ◽  
Fatima Alzaabi ◽  
Zineb Matouk ◽  
...  

A numerical simulation study on elastic wave propagation of a phononic composite structure consisting of epoxy and tungsten carbide is presented for low-frequency elastic wave attenuation applications. The calculated dispersion curves of the epoxy/tungsten carbide composite show that the propagation of elastic waves is prohibited inside the periodic structure over a frequency range. To achieve a wide bandgap, the elastic composite structure can be optimized by changing its dimensions and arrangement, including size, number, and rotation angle of square inclusions. The simulation results show that increasing the number of inclusions and the filling fraction of the unit cell significantly broaden the phononic bandgap compared to other geometric tunings. Additionally, a nonmonotonic relationship between the bandwidth and filling fraction of the composite was found, and this relationship results from spacing among inclusions and inclusion sizes causing different effects on Bragg scatterings and localized resonances of elastic waves. Moreover, the calculated transmission spectra of the epoxy/tungsten carbide composite structure verify its low-frequency bandgap behavior.


2012 ◽  
Vol 2012 ◽  
pp. 1-25 ◽  
Author(s):  
S. L. Han ◽  
Takeshi Kinoshita

The determination of an external force is a very important task for the purpose of control, monitoring, and analysis of damages on structural system. This paper studies a stochastic inverse method that can be used for determining external forces acting on a nonlinear vibrating system. For the purpose of estimation, a stochastic inverse function is formulated to link an unknown external force to an observable quantity. The external force is then estimated from measurements of dynamic responses through the formulated stochastic inverse model. The applicability of the proposed method was verified with numerical examples and laboratory tests concerning the wave-structure interaction problem. The results showed that the proposed method is reliable to estimate the external force acting on a nonlinear system.


Sign in / Sign up

Export Citation Format

Share Document