Guided image filtering based ℓ0 gradient minimization for limited-angle CT image reconstruction

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Tianyi Wang ◽  
Chengxiang Wang ◽  
Kequan Zhao ◽  
Wei Yu ◽  
Min Huang

Abstract Limited-angle computed tomography (CT) reconstruction problem arises in some practical applications due to restrictions in the scanning environment or CT imaging device. Some artifacts will be presented in image reconstructed by conventional analytical algorithms. Although some regularization strategies have been proposed to suppress the artifacts, such as total variation (TV) minimization, there is still distortion in some edge portions of image. Guided image filtering (GIF) has the advantage of smoothing the image as well as preserving the edge. To further improve the image quality and protect the edge of image, we propose a coupling method, that combines ℓ 0 {\ell_{0}} gradient minimization and GIF. An intermediate result obtained by ℓ 0 {\ell_{0}} gradient minimization is regarded as a guidance image of GIF, then GIF is used to filter the result reconstructed by simultaneous algebraic reconstruction technique (SART) with nonnegative constraint. It should be stressed that the guidance image is dynamically updated as the iteration process, which can transfer the edge to the filtered image. Some simulation and real data experiments are used to evaluate the proposed method. Experimental results show that our method owns some advantages in suppressing the artifacts of limited angle CT and in preserving the edge of image.

IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 99954-99963 ◽  
Author(s):  
Jiaxi Wang ◽  
Chengxiang Wang ◽  
Yumeng Guo ◽  
Wei Yu ◽  
Li Zeng

2020 ◽  
Vol 58 (11) ◽  
pp. 2621-2629
Author(s):  
Yuanwei He ◽  
Li Zeng ◽  
Wei Yu ◽  
Changcheng Gong

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Lu-zhen Deng ◽  
Peng Feng ◽  
Mian-yi Chen ◽  
Peng He ◽  
Quang-sang Vo ◽  
...  

Compressive sensing (CS) theory has great potential for reconstructing CT images from sparse-views projection data. Currently, total variation (TV-) based CT reconstruction method is a hot research point in medical CT field, which uses the gradient operator as the sparse representation approach during the iteration process. However, the images reconstructed by this method often suffer the smoothing problem; to improve the quality of reconstructed images, this paper proposed a hybrid reconstruction method combining TV and non-aliasing Contourlet transform (NACT) and using the Split-Bregman method to solve the optimization problem. Finally, the simulation results show that the proposed algorithm can reconstruct high-quality CT images from few-views projection using less iteration numbers, which is more effective in suppressing noise and artefacts than algebraic reconstruction technique (ART) and TV-based reconstruction method.


2021 ◽  
Vol 269 ◽  
pp. 01020
Author(s):  
Lingli Zhang ◽  
An Luo

Reducing the radiation exposure in computed tomography (CT) is always a significant research topic in radiology. Image reconstruction from few-view projection is a reasonable and effective way to decrease the number of rays to lower the radiation exposure. But how to maintain high image reconstruction quality while reducing radiation exposure is a major challenge. To solve this problem, several researchers are absorbed in l0 or l1 regularization based optimization models to deal with it. However, the solution of l1 regularization based optimization model is not sparser than that of l1/2 or l0 regularization, and solving the l0 regularization is more difficult than solving the l1/2 regularization. In this paper, we develop l1/2 regularization for wavelet frames based image reconstruction model to research the few-view problem. First, the existence of the solution of the corresponding model is demonstrated. Second, an alternate direction method (ADM) is utilized to separate the original problem into two subproblems, where the former subproblem about the image is solved using the idea of the proximal mapping, the simultaneous algebraic reconstruction technique (SART) and the projection and contraction (PC) algorithm, and the later subproblem about the wavelet coefficients is solved using the half thresholding (HT) algorithm. Furthermore, the convergence analysis of our method is given by the simulated implementions. Simulated and real experiments confirm the effectiveness of our method.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 151878-151887
Author(s):  
Zhaoqiang Shen ◽  
Changcheng Gong ◽  
Wei Yu ◽  
Li Zeng

Sign in / Sign up

Export Citation Format

Share Document