algebraic reconstruction technique
Recently Published Documents


TOTAL DOCUMENTS

190
(FIVE YEARS 19)

H-INDEX

20
(FIVE YEARS 1)

2021 ◽  
Vol 2071 (1) ◽  
pp. 012044
Author(s):  
A J Lubis ◽  
N F Mohd Nasir ◽  
Z Zakaria ◽  
M Jusoh ◽  
M M Azizan ◽  
...  

Abstract Magnetic induction tomography (MIT) is a technique used for imaging electromagnetic properties of objects using eddy current effects. The non-linear characteristics had led to more difficulties with its solution especially in dealing with low conductivity imaging materials such as biological tissues. Two methods that could be applied for MIT image processing which is the Generative Adversarial Network (GAN) and the Algebraic Reconstruction Technique (ART). ART is widely used in the industry due to its ability to improve the quality of the reconstructed image at a high scanning speed. GAN is an intelligent method which would be able to carry out the training process. In the GAN method, the MIT principle is used to find the optimum global conductivity distribution and it is described as a training process and later, reconstructed by a generator. The output is an approximate reconstruction of the distribution’s internal conductivity image. Then, the results were compared with the previous traditional algorithm, namely the regularization algorithm of BPNN and Tikhonov Regularization method. It turned out that GAN had able to adjust the non-linear relationship between input and output. GAN was also able to solve non-linear problems that cannot be solved in the previous traditional algorithms, namely Back Propagation Neural Network (BPNN) and Tikhonov Regularization method. There are several other intelligent algorithms such as CNN (Convolution Neural Network) and K-NN (K-Nearest Neighbor), but such algorithms have not been able to produce the expected image quality. Thus, further study is still needed for the improvement of the image quality. The expected result in this study is the comparison of these two techniques, namely ART and GAN to get the best results on the image reconstruction using MIT. Thus, it is shown that GAN is a better candidate for this purpose.


2021 ◽  
Vol 63 (9) ◽  
pp. 534-539
Author(s):  
C Hoyle ◽  
M Sutcliffe ◽  
P Charlton ◽  
S Mosey

Ultrasonic through-transmission data processed using the back-projection algorithm offers depth and lateral information about a defect beyond the capabilities of current through-transmission techniques. This technique was trialled on a carbon steel block containing side-drilled holes. Imaging artefacts can arise from the use of the backprojection algorithm, due to applying a weighting of one to each pixel, irrespective of how much of the pixel is intersected by the beam. Noise can also occur within the image where there are few intersections of the pixels made. This is seen at the edges of the image. In this paper, a novel back-projection technique utilises the weighting of pixels, dependent on the normalised weight of the beam that intersects them, to reduce any artefacts that occurred previously due to the backprojection algorithm. This paper also explores the use of the algebraic reconstruction technique (ART) algorithm for noise removal, thus increasing the sharpness of the defect.


2019 ◽  
Vol 22 (4) ◽  
pp. 307-314
Author(s):  
Shimaa Abdulsalam Khazal ◽  
Mohammed Hussein Ali

Cone-beam computed tomography (CBCT) is an indispensable method that reconstructs three dimensional (3D) images. CBCT employs a mathematical technique of reconstruction, which reveals the anatomy of the patient’s body through the measurements of projections. The mathematical techniques employed in the reconstruction process are classified as; analytical, and iterative. The iterative reconstruction methods have been proven to be superior over the analytical methods, but due to their prolonged reconstruction time those methods are excluded from routine use in clinical applications. The aim of this research is to accelerate the iterative methods by performing the reconstruction process using a graphical processing unit (GPU). This method is tested on two iterative-reconstruction algorithms (IR), the algebraic reconstruction technique (ART), and the multiplicative algebraic reconstruction technique (MART). The results are compared against the traditional ART, and MART. A 3D test head phantom image is used in this research to demonstrate results of the proposed method on the reconstruction algorithms. The simulation results are executed using MATLAB (version R2018b) programming language and computer system with the following specifications: CPU core i7 (2.40 GHz) for the processing, with a NIVDIA GEFORCE GPU. Experimental results indicate, that this method reduces the reconstruction time for the iterative algorithms.


2019 ◽  
Vol 9 (22) ◽  
pp. 4955
Author(s):  
Min-Gyu Jeon ◽  
Deog-Hee Doh ◽  
Yoshihiro Deguchi

In this study, the temperature distribution of the Methane-Air premixed flame was measured. In order to enhance the measurement accuracy of the CT-TDLAS (Computed tomography-tunable diode laser absorption spectroscopy), the SMART (simultaneous multiplicative algebraic reconstruction technique) algorithm has been adopted. Further, the SLOS (summation of line of sight) and the CSLOS (corrective summation of line of sight) methods have been adopted to increase measurement accuracies. It has been verified that the relative error for the temperatures measured by the thermocouples and calculated by the CT-TDLAS was about 10%.


Sign in / Sign up

Export Citation Format

Share Document