A stability estimate for the solution to the ill-posed Cauchy problem for elasticity equations

Author(s):  
V. G. Romanov
2020 ◽  
Vol 18 (1) ◽  
pp. 1685-1697
Author(s):  
Zhenyu Zhao ◽  
Lei You ◽  
Zehong Meng

Abstract In this paper, a Cauchy problem for the Laplace equation is considered. We develop a modified Tikhonov regularization method based on Hermite expansion to deal with the ill posed-ness of the problem. The regularization parameter is determined by a discrepancy principle. For various smoothness conditions, the solution process of the method is uniform and the convergence rate can be obtained self-adaptively. Numerical tests are also carried out to verify the effectiveness of the method.


2019 ◽  
Author(s):  
Yu. Grigor’ev ◽  
K. Gürlebeck ◽  
D. Legatiuk ◽  
A. Yakovlev

2012 ◽  
Vol 2012 ◽  
pp. 1-18
Author(s):  
Fang-Fang Dou ◽  
Chu-Li Fu

We consider a Cauchy problem for the Helmholtz equation at a fixed frequency. The problem is severely ill posed in the sense that the solution (if it exists) does not depend continuously on the data. We present a wavelet method to stabilize the problem. Some error estimates between the exact solution and its approximation are given, and numerical tests verify the efficiency and accuracy of the proposed method.


2020 ◽  
Vol 56 (9) ◽  
pp. 1130-1139
Author(s):  
O. I. Makhmudov ◽  
I. E. Niyozov

Mathematics ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 48
Author(s):  
Hongwu Zhang ◽  
Xiaoju Zhang

This article researches an ill-posed Cauchy problem of the elliptic-type equation. By placing the a-priori restriction on the exact solution we establish conditional stability. Then, based on the generalized Tikhonov and fractional Tikhonov methods, we construct a generalized-fractional Tikhonov-type regularized solution to recover the stability of the considered problem, and some sharp-type estimates of convergence for the regularized method are derived under the a-priori and a-posteriori selection rules for the regularized parameter. Finally, we verify that the proposed method is efficient and acceptable by making the corresponding numerical experiments.


Mathematics ◽  
2019 ◽  
Vol 7 (5) ◽  
pp. 422
Author(s):  
Nguyen Anh Triet ◽  
Nguyen Duc Phuong ◽  
Van Thinh Nguyen ◽  
Can Nguyen-Huu

In this work, we focus on the Cauchy problem for the Poisson equation in the two dimensional domain, where the initial data is disturbed by random noise. In general, the problem is severely ill-posed in the sense of Hadamard, i.e., the solution does not depend continuously on the data. To regularize the instable solution of the problem, we have applied a nonparametric regression associated with the truncation method. Eventually, a numerical example has been carried out, the result shows that our regularization method is converged; and the error has been enhanced once the number of observation points is increased.


Sign in / Sign up

Export Citation Format

Share Document