Modified and Optimized Method for Segmenting Pulmonary Parenchyma in CT Lung Images, Based on Fractional Calculus and Natural Selection

2017 ◽  
Vol 28 (5) ◽  
pp. 721-732 ◽  
Author(s):  
S. Pramod Kumar ◽  
Mrityunjaya V. Latte

Abstract Computer-aided diagnosis of lung segmentation is the fundamental requirement to diagnose lung diseases. In this paper, a two-dimensional (2D) Otsu algorithm by Darwinian particle swarm optimization (DPSO) and fractional-order Darwinian particle swarm optimization (FODPSO) is proposed to segment the pulmonary parenchyma from the lung image obtained through computed tomography (CT) scans. The proposed method extracts pulmonary parenchyma from multi-sliced CT. This is a preprocessing step to identify pulmonary diseases such as emphysema, tumor, and lung cancer. Image segmentation plays a significant role in automated pulmonary disease diagnosis. In traditional 2D Otsu, exhaustive search plays an important role in image segmentation. However, the main disadvantage of the 2D Otsu method is its complex computation and processing time. In this paper, the 2D Otsu method optimized by DPSO and FODPSO is developed to reduce complex computations and time. The efficient segmentation is very important in object classification and detection. The particle swarm optimization (PSO) method is widely used to speed up the computation and maintain the same efficiency. In the proposed algorithm, the limitation of PSO of getting trapped in local optimum solutions is overcome. The segmentation technique is assessed and equated with the traditional 2D Otsu method. The test results demonstrate that the proposed strategy gives better results. The algorithm is tested on the Lung Image Database Consortium image collections.

2012 ◽  
Vol 532-533 ◽  
pp. 1553-1557 ◽  
Author(s):  
Yue Yang ◽  
Shu Xu Guo ◽  
Run Lan Tian ◽  
Peng Liu

A novel image segmentation algorithm based on fuzzy C-means (FCM) clustering and improved particle swarm optimization (PSO) is proposed. The algorithm takes global search results of improved PSO as the initialized values of the FCM, effectively avoiding easily trapping into local optimum of the traditional FCM and the premature convergence of PSO. Meanwhile, the algorithm takes the clustering centers as the reference to search scope of improved PSO algorithm for global searching that are obtained through hard C-means (HCM) algorithm for improving the velocity of the algorithm. The experimental results show the proposed algorithm can converge more quickly and segment the image more effectively than the traditional FCM algorithm.


2014 ◽  
Vol 989-994 ◽  
pp. 3649-3653 ◽  
Author(s):  
Ya Ti Lu ◽  
Wen Li Zhao ◽  
Xiao Bo Mao

Both maximum entropy method and Particle swarm optimization (PSO) are common threshold segmentation methods which have been used not only in image segmentation, but also in multi-threshold segmentation. Maximum entropy method is time-consuming, PSO may easily get trapped in a local optimum. In view of this concerning issue, we propose the PSO and maximum entropy are combined to make improvements on the PSO introduced in expansion model and opposition-based module. The objective functions of the maximum entropy as well as the PSO are obtained, which have improved to optimize them and search the optimal threshold combination, to achieve multi-threshold image segmentation. The results demonstrate that the new algorithm improved the segmentation speed and enhanced the robustness. And the optimizing results are stable.


2015 ◽  
Vol 12 (2) ◽  
pp. 873-893 ◽  
Author(s):  
Jiansheng Liu ◽  
Shangping Qiao

This paper presents a hybrid differential evolution, particle swarm optimization and fuzzy c-means clustering algorithm called DEPSO-FCM for image segmentation. By the use of the differential evolution (DE) algorithm and particle swarm optimization to solve the FCM image segmentation influenced by the initial cluster centers and easily into a local optimum. Empirical results show that the proposed DEPSO-FCM has strong anti-noise ability; it can improve FCM and get better image segmentation results. In particular, for the HSI color image segmentation, the DEPSO-FCM can effectively solve the instability of FCM and the error split because of the singularity of the H component.


2013 ◽  
Vol 760-762 ◽  
pp. 2194-2198 ◽  
Author(s):  
Xue Mei Wang ◽  
Yi Zhuo Guo ◽  
Gui Jun Liu

Adaptive Particle Swarm Optimization algorithm with mutation operation based on K-means is proposed in this paper, this algorithm Combined the local searching optimization ability of K-means with the gobal searching optimization ability of Particle Swarm Optimization, the algorithm self-adaptively adjusted inertia weight according to fitness variance of population. Mutation operation was peocessed for the poor performative particle in population. The results showed that the algorithm had solved the poblems of slow convergence speed of traditional Particle Swarm Optimization algorithm and easy falling into the local optimum of K-Means, and more effectively improved clustering quality.


2013 ◽  
Vol 427-429 ◽  
pp. 1934-1938
Author(s):  
Zhong Rong Zhang ◽  
Jin Peng Liu ◽  
Ke De Fei ◽  
Zhao Shan Niu

The aim is to improve the convergence of the algorithm, and increase the population diversity. Adaptively particles of groups fallen into local optimum is adjusted in order to realize global optimal. by judging groups spatial location of concentration and fitness variance. At the same time, the global factors are adjusted dynamically with the action of the current particle fitness. Four typical function optimization problems are drawn into simulation experiment. The results show that the improved particle swarm optimization algorithm is convergent, robust and accurate.


2017 ◽  
Vol 2017 ◽  
pp. 1-22
Author(s):  
Danping Wang ◽  
Kunyuan Hu ◽  
Lianbo Ma ◽  
Maowei He ◽  
Hanning Chen

A hybrid coevolution particle swarm optimization algorithm with dynamic multispecies strategy based on K-means clustering and nonrevisit strategy based on Binary Space Partitioning fitness tree (called MCPSO-PSH) is proposed. Previous search history memorized into the Binary Space Partitioning fitness tree can effectively restrain the individuals’ revisit phenomenon. The whole population is partitioned into several subspecies and cooperative coevolution is realized by an information communication mechanism between subspecies, which can enhance the global search ability of particles and avoid premature convergence to local optimum. To demonstrate the power of the method, comparisons between the proposed algorithm and state-of-the-art algorithms are grouped into two categories: 10 basic benchmark functions (10-dimensional and 30-dimensional), 10 CEC2005 benchmark functions (30-dimensional), and a real-world problem (multilevel image segmentation problems). Experimental results show that MCPSO-PSH displays a competitive performance compared to the other swarm-based or evolutionary algorithms in terms of solution accuracy and statistical tests.


Sign in / Sign up

Export Citation Format

Share Document