A Simple but Accurate Method for Analytical Estimation of Splice Loss in Single-Mode Triangular Index Fibers for Different V Numbers Including the Low Ones

2016 ◽  
Vol 37 (3) ◽  
Author(s):  
Rahul Debnath ◽  
Sankar Gangopadhyay

AbstractWe report formulation of simple but accurate analytical expressions at the splice for both angular and transverse mismatches in case of single mode triangular index fibers. Here, we employ the simple series expression for fundamental modal field of such fibers. The analysis takes care of large

2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Jayanta Aich ◽  
Anup Kumar Maiti ◽  
Angshuman Majumdar ◽  
Sankar Gangopadhyay

AbstractWe present investigation of Petermann I and II spot sizes in the presence of Kerr nonlinearity. Our study is based on the simple power series formulation for fundamental modal field of single-mode-graded index fiber developed by Chebyshev formalism. Based on the said power series expression in the absence of nonlinearity, analytical expressions of the said spot sizes can be prescribed. Using the analytical expressions of the said spot sizes in the absence of nonlinearity, we apply iterative technique in order to predict the said propagation characteristics in presence of Kerr nonlinearity. In this context, we choose some typical single-mode step and parabolic index fibers. We show that the our results agree excellently with the exact results which can be obtained by using rigorous finite-element technique. This leads to verification of accuracy of our simple technique. Moreover, evaluation of the concerned parameters by our formalism involves little computation. Thus, our method provides an accurate but simple alternative to the existing rigorous methods in this context. Accordingly, this novel and simple formalism will prove user friendly to the system engineers in the field non linear optics.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Tilak Mukherjee ◽  
Angshuman Majumdar ◽  
Sankar Gangopadhyay

AbstractThis paper reports simple but accurate analytical expressions of group delay and modal dispersion parameters for single-mode graded index fibers over a wide range of V numbers. The formulation employs power series expression for the fundamental modal field of graded index fiber derived by Chebyshev formalism. Choosing some typical step, parabolic and triangular index fibers as examples in our present study, we use the prescribed formulations to estimate group delay and modal dispersion parameters of those fibers both in presence and absence of Kerr nonlinearity. Iterative technique is applied for prediction of concerned propagation parameters in presence of Kerr nonlinearity. Our results show excellent agreement with the numerical exact ones both in absence and presence of Kerr nonlinearity. The exact results in case of Kerr nonlinearity are obtained using cumbersome finite element method. The execution of our accurate formalism involves little computation and is thus user friendly for technologists and researchers working in the field of nonlinear optical engineering.


Author(s):  
Mohammad I. Younis

We present analytical solutions of the electrostatically actuated initially deformed cantilever beam problem. We use a continuous Euler-Bernoulli beam model combined with a single-mode Galerkin approximation. We derive simple analytical expressions for two commonly observed deformed beams configurations: the curled and tilted configurations. The derived analytical formulas are validated by comparing their results to experimental data in the literature and numerical results of a multi-mode reduced order model. The derived expressions do not involve any complicated integrals or complex terms and can be conveniently used by designers for quick, yet accurate, estimations. The formulas are found to yield accurate results for most commonly encountered microbeams of initial tip deflections of few microns. For largely deformed beams, we found that these formulas yield less accurate results due to the limitations of the single-mode approximations they are based on. In such cases, multi-mode reduced order models need to be utilized.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 99283-99289
Author(s):  
Ziru Cui ◽  
Chaowei Yuan ◽  
Kehang Xu ◽  
Yong Sun ◽  
Shan Yin

Sign in / Sign up

Export Citation Format

Share Document