dispersion parameters
Recently Published Documents


TOTAL DOCUMENTS

407
(FIVE YEARS 113)

H-INDEX

25
(FIVE YEARS 5)

MAUSAM ◽  
2021 ◽  
Vol 43 (3) ◽  
pp. 311-314
Author(s):  
M.A.El- Shahawi ◽  
A.B. MAYHOUB ◽  
S. M. ETMAN

The concentration of pollutants released from one chimney of the National Company for cement production in Helwan industrial area has been calculated; The calculations are based on the Gaussian plume model covering the period June 1988-May .1989. A method has been presented to calculate the dispersion parameters ay and az in horizontal and vertical directions respectively. The method rely on two-level observation of both wind velocity and temperature. The plume rise correction recommended by Briggs has been adopted to calculate the effective release height (stack height~ plus the plume rise).. The maximum concentration values for different heights and their1otations have been calculated.


Algorithms ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 16
Author(s):  
George Tzougas ◽  
Natalia Hong ◽  
Ryan Ho

In this article we present a class of mixed Poisson regression models with varying dispersion arising from non-conjugate to the Poisson mixing distributions for modelling overdispersed claim counts in non-life insurance. The proposed family of models combined with the adopted modelling framework can provide sufficient flexibility for dealing with different levels of overdispersion. For illustrative purposes, the Poisson-lognormal regression model with regression structures on both its mean and dispersion parameters is employed for modelling claim count data from a motor insurance portfolio. Maximum likelihood estimation is carried out via an expectation-maximization type algorithm, which is developed for the proposed family of models and is demonstrated to perform satisfactorily.


MAUSAM ◽  
2021 ◽  
Vol 64 (4) ◽  
pp. 645-654
Author(s):  
KHALED SMESSA ◽  
SOAD METMAN

LFkkuh; Lrj izdh.kZu ds fy, xkSlh;u fiPNd ekWMy ¼Gaussian Plume Model½ dk O;kid :i ls iz;ksx fd;k tkrk gSA vuqizLFk iou dh dqy lkanzrk Kkr djus ds fy, xkSlh;u lw= ¼QkWewyk½ dks laxfBr fd;k gSA vuqizLFk iou dh dqy lkanzrk dh x.kuk djus ds fy, izdh.kZu izkpyksa dh fHkUu&fHkUu iz.kkfy;ksa dk mi;ksx fd;k x;k gSA lrg Lrj esa Å¡pkbZ ds vuqlkj iou xfr dh fHkUurk dk o.kZu djus ds fy, ykxfjFehd foaM izksQkby dk mi;ksx fd;k x;k gSA blesa NksM+h tkus okyh izHkkoh Å¡pkbZ dks /;ku  esa j[kk x;k gSA fHkUu fHkUu izdh.kZu izkpy iz.kkfy;ksa ds fy, iwokZuqekfur lkanzrkvksa vkSj dksisugsxu ds folj.k iz;ksx ls izkIr fd, x, izsf{kr vk¡dM+ksa dh rqyuk djus ds fy, lkaf[;dh; ifjekiksa dk mi;ksx fd;k x;k gSA  The Gaussian plume model is the most widely used model for local scale dispersion. The   Gaussian formula has been integrated to obtain the crosswind-integrated concentration. Different systems of dispersion parameters are used to calculate the crosswind integrated concentration. A logarithmic wind profile is used to describe the variation of wind speed with height in the surface layer. The effective release height was taken into consideration. Statistical measures are utilized in the comparison between the predicted concentrations for different dispersion parameter systems and the observed concentrations data obtained from Copenhagen diffusion experiment.


Author(s):  
Cinara Ewerling da Rosa ◽  
Michel Stefanello ◽  
Silvana Maldaner ◽  
Douglas Stefanello Facco ◽  
Débora Regina Roberti ◽  
...  

Considering the influence of the downslope windstorm called “Vento Norte” (VNOR; Portuguese for “North Wind”) in planetary boundary layer turbulent features, a new set of turbulent parameterizations, which are to be used in atmospheric dispersion models, has been derived. Taylor’s statistical diffusion theory, velocity spectra obtained at four levels (3, 6, 14, and 30 m) in a micrometeorological tower, and the energy-containing eddy scales are used to calculate neutral planetary boundary layer turbulent parameters. Vertical profile formulations of the wind velocity variances and Lagrangian decorrelation time scales are proposed, and to validate this new parameterization, it is applied in a Lagrangian Stochastic Particle Dispersion Model to simulate the Prairie Grass concentration experiments. The simulated concentration results were shown to agree with those observed.


2021 ◽  
Author(s):  
Zhanwei Du ◽  
Chunyu Wang ◽  
Caifen Liu ◽  
Yuan Bai ◽  
Pei Sen ◽  
...  

Superspreading in transmission is a feature of SARS-CoV-2 transmission. We conducted a systematic review and meta-analysis on globally reported dispersion parameters of SARS-CoV-2. The pooled estimate was 0.55 (95% CI: 0.30, 0.79). The study location and method were found to be important drivers for its diversity.


Biomeditsina ◽  
2021 ◽  
Vol 17 (4) ◽  
pp. 18-37
Author(s):  
S. L. Lyublinskiy ◽  
I. N. Lyublinskaya ◽  
E. M. Koloskova ◽  
A. M. Azizov ◽  
V. N. Karkischenko ◽  
...  

In order to preserve and increase the biological effectiveness of biologically active substances isolated from deer musk, we studied technological aspects of obtaining a substance of lipid-stabilized stable nanoparticles from deer musk. The stability of the obtained substance was evaluated. It was found that homogenization under high pressure is an optimal approach to obtaining biologically active substances from deer musk. The modes of preparation of a liposomal form of biologically active substances with predetermined dispersion parameters (average particle diameter 250 ± 100 nm, polydispersity index 0.3 ± 0.1, and zeta potential from -5 to -35 mV) were determined. It was found that the high-pressure homogenizer “Donor-5” makes it possible to obtain liposomal dispersions with standard parameters and the degree of inclusion of musk biologically active substances up to 60%, at the same time as providing minimal oxidation and hydrolysis of phospholipids (oxidation index 0.3). Our studies showed that the use of a domestic phosphatidylcholine is economically justified and allows obtaining liposomal forms of proper quality. The quality indicators of the obtained liposomal substance were characterised by conventional analytical methods (dynamic light scattering, electron microscopy, gel chromatography, chromatography-mass spectrometry, etc.). On the basis of the results obtained, a draft specification was developed for a liposomal substance (powder) containing a complex of biologically active substances isolated from deer musk. The developed technology for obtaining a liposomal form of biologically active substances from deer musk can be scaled up in accordance with GMP requirements.


Sign in / Sign up

Export Citation Format

Share Document