modal field
Recently Published Documents


TOTAL DOCUMENTS

72
(FIVE YEARS 15)

H-INDEX

8
(FIVE YEARS 3)

PhotoniX ◽  
2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Chenlei Li ◽  
Ming Zhang ◽  
Hongnan Xu ◽  
Ying Tan ◽  
Yaocheng Shi ◽  
...  

AbstractOn-chip mode-manipulation is one of the most important physical fundamentals for many photonic integrated devices and circuits. In the past years, great progresses have been achieved on subwavelength silicon photonics for on-chip mode-manipulation by introducing special subwavelength photonic waveguides. Among them, there are two popular waveguide structures available. One is silicon hybrid plasmonic waveguides (HPWGs) and the other one is silicon subwavelength-structured waveguides (SSWGs). In this paper, we focus on subwavelength silicon photonic devices and the applications with the manipulation of the effective indices, the modal field profiles, the mode dispersion, as well as the birefringence. First, a review is given about subwavelength silicon photonics for the fundamental-mode manipulation, including high-performance polarization-handling devices, efficient mode converters for chip-fiber edge-coupling, and ultra-broadband power splitters. Second, a review is given about subwavelength silicon photonics for the higher-order-mode manipulation, including multimode converters, multimode waveguide bends, and multimode waveguide crossing. Finally, some emerging applications of subwavelength silicon photonics for on-chip mode-manipulation are discussed.


APL Photonics ◽  
2021 ◽  
Vol 6 (6) ◽  
pp. 066104
Author(s):  
Nikollao Sulollari ◽  
James Keeley ◽  
SaeJune Park ◽  
Pierluigi Rubino ◽  
Andrew D. Burnett ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5510
Author(s):  
Henrik Mäntynen ◽  
Nicklas Anttu ◽  
Harri Lipsanen

Semiconductor nanowires offer a promising route of realizing nanolasers for the next generation of chip-scale optoelectronics and photonics applications. Established fabrication methods can produce vertical semiconductor nanowires which can themselves act both as a gain medium and as a Fabry–Pérot cavity for feedback. The lasing threshold in such nanowire lasers is affected by the modal confinement factor and end facet reflectivities, of which the substrate end reflectivity tends to be limited due to small refractive index contrast between the nanowire and substrate. These modal properties, however, also depend strongly on the modal field profiles. In this work, we use numerical simulations to investigate waveguide modes in vertical nanowire oligomers (that is, arrangements of few vertical nanowires close to each other) and their modal properties compared to single nanowire monomers. We solve for the oligomer waveguide eigenmodes which are understood as arising from interaction of monomer modes and further compute the reflectivity of these modes at the end facets of the nanowires. We consider either the nanowires or an additional coating layer as the gain medium. We show that both types of oligomers can exhibit modes with modal properties leading to reduced lasing threshold and also give directions for further research on the topic.


2020 ◽  
Vol 68 (12) ◽  
pp. 8203-8208
Author(s):  
Lucas Polo-Lopez ◽  
Juan Corcoles ◽  
Jorge A. Ruiz-Cruz
Keyword(s):  

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Tilak Mukherjee ◽  
Angshuman Majumdar ◽  
Sankar Gangopadhyay

AbstractThis paper reports simple but accurate analytical expressions of group delay and modal dispersion parameters for single-mode graded index fibers over a wide range of V numbers. The formulation employs power series expression for the fundamental modal field of graded index fiber derived by Chebyshev formalism. Choosing some typical step, parabolic and triangular index fibers as examples in our present study, we use the prescribed formulations to estimate group delay and modal dispersion parameters of those fibers both in presence and absence of Kerr nonlinearity. Iterative technique is applied for prediction of concerned propagation parameters in presence of Kerr nonlinearity. Our results show excellent agreement with the numerical exact ones both in absence and presence of Kerr nonlinearity. The exact results in case of Kerr nonlinearity are obtained using cumbersome finite element method. The execution of our accurate formalism involves little computation and is thus user friendly for technologists and researchers working in the field of nonlinear optical engineering.


2020 ◽  
Vol 41 (4) ◽  
pp. 385-391 ◽  
Author(s):  
Subhalaxmi Chakraborty ◽  
Chintan Kumar Mandal ◽  
Sankar Gangopadhyay

AbstractWe report evaluation of first higher order modal field for dual mode optical fiber having step and parabolic index profiles. The study is carried out both in absence as well as in presence of Kerr nonlinearity. The analysis is based on a simple iterative method involving Chebyshev formalism. Taking some typical step- and parabolic-index fibers as examples, we show that our results agree excellently with the exact results which can be obtained by applying rigorous methods. Thus, our simple formalism stands the merit of being considered as an accurate alternative to the existing cumbersome methods. The prescribed formalism provides scope for accurate estimation of different propagation parameters associated with first higher order mode in such kinds of fibers in presence of Kerr nonlinearity. The execution of formalism being user friendly, it will be beneficial to the system engineers working in the field of optical technology.


2020 ◽  
Vol 34 (10) ◽  
pp. 2050086
Author(s):  
Ye Liu ◽  
Chun Jiang

We theoretically, demonstrate a high delay bandwidth product (DBP) and zero group velocity dispersion (GVD) in a two-dimensional one-way slow light waveguide. The waveguide consists of gyromagnetic photonic crystal (GMPC) and a cladding formed by silicon photonic crystal. At the edge of the band, weak interactions (“semi-anticrossing”) between the chiral edge state (CES) mode and the mode localized at the surface of cladding are observed. The group velocity of CES wave can be tuned by adjusting the modal field distribution. As a result, an extraordinarily large value of normalized DBP of 0.63 with a group index of 10.32 and a bandwidth ranging from [Formula: see text] to [Formula: see text] is obtained. This result may contribute to one-way slow light applications in information communication systems.


2019 ◽  
Vol 41 (1) ◽  
pp. 67-72 ◽  
Author(s):  
Subhalaxmi Chakraborty ◽  
Chintan Kumar Mandal ◽  
Sankar Gangopadhyay

Abstract The power series formulation for modal field of single-mode graded index fibers by Chebyshev technique has worked excellently in predicting accurately different propagation characteristics in simple fashion. Here we develop a simple iterative method involving Chebyshev formalism to predict the modal field of single-mode graded index fiber in the presence of Kerr-type nonlinearity. Taking step and parabolic index fibers as typical examples, we show that our results match excellently with the available exact results obtained vigorously. Thus, the reported technique can be considered as an accurate alternative to the existing cumbersome techniques. Accordingly, this formalism will be beneficial to the technologies for evaluation of modal noise in single-mode Kerr-type nonlinear graded index fibers.


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Jayanta Aich ◽  
Anup Kumar Maiti ◽  
Angshuman Majumdar ◽  
Sankar Gangopadhyay

AbstractWe present investigation of Petermann I and II spot sizes in the presence of Kerr nonlinearity. Our study is based on the simple power series formulation for fundamental modal field of single-mode-graded index fiber developed by Chebyshev formalism. Based on the said power series expression in the absence of nonlinearity, analytical expressions of the said spot sizes can be prescribed. Using the analytical expressions of the said spot sizes in the absence of nonlinearity, we apply iterative technique in order to predict the said propagation characteristics in presence of Kerr nonlinearity. In this context, we choose some typical single-mode step and parabolic index fibers. We show that the our results agree excellently with the exact results which can be obtained by using rigorous finite-element technique. This leads to verification of accuracy of our simple technique. Moreover, evaluation of the concerned parameters by our formalism involves little computation. Thus, our method provides an accurate but simple alternative to the existing rigorous methods in this context. Accordingly, this novel and simple formalism will prove user friendly to the system engineers in the field non linear optics.


Sign in / Sign up

Export Citation Format

Share Document