Using nonlinear ring resonators for designing an all optical comparator

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Amir Etebari ◽  
Hamed Alipour-Banaei ◽  
Alireza Andalib

Abstract An all optical comparator is designed based on photonic crystals. The proposed structure was designed based on optical threshold switching that is realized using three nonlinear ring resonators. All nonlinear rings have the same optical characteristics, such that they can drop low intensity (as low as 0.5 W/μm2) optical waves at 1550 nm, but cannot drop the optical waves with optical intensity of 1 W/μm2. For the proposed structure the rise and fall time are about 2 and 1 ps, respectively. Therefore the bit rate is about 167 GHz and the ON/OFF contrast ratios for O1, O2, and O3 are 13.5, 13.6, and 13.3 dB, respectively.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Asghar Askarian

Abstract In this study, we are going to design all optical 1-bit comparator by combining wave interference and threshold switching methods. The final structure composed of two nonlinear ring resonators and seven waveguides. The functionality of the suggested logical structure is analyzed and simulated by using plane wave expansion (PWE) and finite difference time domain (FDTD) methods. According to results, the proposed all optical 1-bit comparator has faster response and smaller footprint than all previous works. The maximum ON-OFF contrast ratio, delay time and area of the suggested optical comparator are about 16.67 dB, 1.8 ps, and 513 µm2, respectively.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Alireza Shamsi

Abstract In this paper a high speed optical half adder is designed. The working mechanism of the proposed structure is based on optical threshold switching. Three nonlinear ring resonators are used for this purpose. These nonlinear ring resonators are created by adding doped glass based rods inside the resonant rings. The proposed structure works with optical waves with central wavelength and optical intensity equal to 1550 nm and 1 W/μm2 respectively. The rise time is 2 ps.


2019 ◽  
Vol 11 (1) ◽  
pp. 10 ◽  
Author(s):  
Saeed Olyaee

In this paper an ultra-compact all-optical encoder is presented by using a two-dimensional photonic crystal. The designed logic gate is based on the interference effect. The proposed structure consists of several photonic crystal waveguides connected by 2 nano-resonators. The nano-resonators are designed to reduce the size of the radius of the dielectric rods. The contrast ratios and delay time for the proposed all-optical encoder are respectively 6 dB and 125 fs. The size of the structure is equal to 132 µm2. Equality of the output power in the logic states “one”, the small dimensions, the low delay time, compact and simple structure have shown that the logic gate is suitable for the using in optical integrated circuits. Full Text: PDF ReferencesA. Salmanpour, Sh. Mohammadnejad, A. Bahrami, "Photonic crystal logic gates: an overview", Optical and Quantum Electronics. 47, 2249 (2015). CrossRef S. C. Xavier, B. E. Carolin, A. p. Kabilan, W. Johnson, "Compact photonic crystal integrated circuit for all-optical logic operation", IET Optoelectronics. 10, 142 (2016). CrossRef Y. Miyoshi, K. Ikeda, H. Tobioka, T. Inoue, S. Namiki, K. Kitayama, "Ultrafast all-optical logic gate using a nonlinear optical loop mirror based multi-periodic transfer function", Optics Express. 16, 2570 (2008). CrossRef D. K. Gayen, A. Bhattachryya, T. Chattopadhyay, J. N. Roy, "Ultrafast All-Optical Half Adder Using Quantum-Dot Semiconductor Optical Amplifier-Based Mach-Zehnder Interferometer", Journal of Lightwave Technology. 30, 3387 (2012). CrossRef A. Mohebzadeh-Bahabady, S. Olyaee, "All-optical NOT and XOR logic gates using photonic crystal nano-resonator and based on an interference effect", IET Optoelectronics. 12, 191 (2018). CrossRef Z. Mohebbi, N. Nozhat, F. Emami, "High contrast all-optical logic gates based on 2D nonlinear photonic crystal", Optics Communications. 355, 130 (2015). CrossRef M. Mansouri-Birjandi, M. Ghadrdan, "Full-optical tunable add/drop filter based on nonlinear photonic crystal ring resonators", Photonics and Nanostructures-Fundamentals and Applications. 21, 44 (2016). CrossRef H. Alipour-Banaei, S. Serajmohammadi, F. Mehdizadeh, "Effect of scattering rods in the frequency response of photonic crystal demultiplexers", Journal of Optoelectronics and Advanced Materials. 17, 259 (2015). DirectLink A. Mohebzadeh-Bahabady, S. Olyaee, H. Arman, "Optical Biochemical Sensor Using Photonic Crystal Nano-ring Resonators for the Detection of Protein Concentration", Current Nanoscience. 13, 421 (2017). CrossRef S. Olyaee, A. Mohebzadeh-Bahabady, "Designing a novel photonic crystal nano-ring resonator for biosensor application", Optical and Quantum Electronics. 47, 1881 (2015). CrossRef F. Parandin, R. Malmir, M. Naseri, A. Zahedi, "Reconfigurable all-optical NOT, XOR, and NOR logic gates based on two dimensional photonic crystals", Superlattices and Microstructures. 113, 737 (2018). CrossRef F. Mehdizadeh, M. Soroosh, H. Alipour-Banaei, "Proposal for 4-to-2 optical encoder based on photonic crystals", IET Optoelectronics. 11, 29 (2017). CrossRef M. Hassangholizadeh-Kashtiban, R. Sabbaghi-Nadooshan, H. Alipour-Banaei, "A novel all optical reversible 4 × 2 encoder based on photonic crystals", Optik. 126, 2368 (2015). CrossRef T. A. Moniem, "All-optical digital 4 × 2 encoder based on 2D photonic crystal ring resonators", Journal of Modern Optics. 63, 735 (2016). CrossRef S. Gholamnejad, M. Zavvari, "Design and analysis of all-optical 4–2 binary encoder based on photonic crystal", Optical and Quantum Electronics. 49, 302 (2017). CrossRef H. Seif-Dargahi, "Ultra-fast all-optical encoder using photonic crystal-based ring resonators", Photonic Network Communications. 36, 272 (2018). CrossRef S. Olyaee, M. Seifouri, A. Mohebzadeh-Bahabady, and M. Sardari, "Realization of all-optical NOT and XOR logic gates based on interference effect with high contrast ratio and ultra-compacted size", Optical and Quantum Electronics. 50, 12 (2018). CrossRef C. J. Wu, C. P. Liu, Z. Ouyang, "Compact and low-power optical logic NOT gate based on photonic crystal waveguides without optical amplifiers and nonlinear materials", Applied Optics.51, 680 (2012). CrossRef Y. C. Jiang, S. B. Liu, H. F. Zhang, X. K. Kong. "Realization of all optical half-adder based on self-collimated beams by two-dimensional photonic crystals", Optics Communications. 348, 90 (2015). CrossRef A. Salmanpour, S. Mohammadnejad, P. T. Omran, "All-optical photonic crystal NOT and OR logic gates using nonlinear Kerr effect and ring resonators", Optical and Quantum Electronics. 47, 3689 (2015). CrossRef E. H. Shaik, N. Rangaswamy, "Single photonic crystal structure for realization of NAND and NOR logic functions by cascading basic gates", Journal of Computational Electronics. 17, 337 (2018). CrossRef


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Hamed Azhdari ◽  
Sahel Javahernia

Abstract Increasing the speed of operation in all optical signal processing is very important. For reaching this goal one needs high speed optical devices. Optical half adders are one of the important building blocks required in optical processing. In this paper an optical half adder was proposed by combining nonlinear photonic crystal ring resonators with optical waveguides. Finite difference time domain method wase used for simulating the final structure. The simulation results confirmed that the rise time for the proposed structure is about 1 ps.


Silicon ◽  
2021 ◽  
Author(s):  
Mohammad Moradi ◽  
Masoud Mohammadi ◽  
Saeed Olyaee ◽  
Mahmood Seifouri

2016 ◽  
Vol 9 (3) ◽  
pp. 362-376 ◽  
Author(s):  
Yunhong Ding ◽  
Haiyan Ou ◽  
Jing Xu ◽  
Meng Xiong ◽  
Yi An ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document