scholarly journals On the BIC for determining the number of control points in B-spline surface approximation in case of correlated observations

2020 ◽  
Vol 10 (1) ◽  
pp. 110-123
Author(s):  
Gaël Kermarrec ◽  
Hamza Alkhatib

Abstract B-spline curves are a linear combination of control points (CP) and B-spline basis functions. They satisfy the strong convex hull property and have a fine and local shape control as changing one CP affects the curve locally, whereas the total number of CP has a more general effect on the control polygon of the spline. Information criteria (IC), such as Akaike IC (AIC) and Bayesian IC (BIC), provide a way to determine an optimal number of CP so that the B-spline approximation fits optimally in a least-squares (LS) sense with scattered and noisy observations. These criteria are based on the log-likelihood of the models and assume often that the error term is independent and identically distributed. This assumption is strong and accounts neither for heteroscedasticity nor for correlations. Thus, such effects have to be considered to avoid under-or overfitting of the observations in the LS adjustment, i.e. bad approximation or noise approximation, respectively. In this contribution, we introduce generalized versions of the BIC derived using the concept of quasi- likelihood estimator (QLE). Our own extensions of the generalized BIC criteria account (i) explicitly for model misspecifications and complexity (ii) and additionally for the correlations of the residuals. To that aim, the correlation model of the residuals is assumed to correspond to a first order autoregressive process AR(1). We apply our general derivations to the specific case of B-spline approximations of curves and surfaces, and couple the information given by the different IC together. Consecutively, a didactical yet simple procedure to interpret the results given by the IC is provided in order to identify an optimal number of parameters to estimate in case of correlated observations. A concrete case study using observations from a bridge scanned with a Terrestrial Laser Scanner (TLS) highlights the proposed procedure.

2016 ◽  
Vol 10 (3) ◽  
Author(s):  
Corinna Harmening ◽  
Hans Neuner

AbstractDue to the establishment of terrestrial laser scanner, the analysis strategies in engineering geodesy change from pointwise approaches to areal ones. These areal analysis strategies are commonly built on the modelling of the acquired point clouds.Freeform curves and surfaces like B-spline curves/surfaces are one possible approach to obtain space continuous information. A variety of parameters determines the B-spline’s appearance; the B-spline’s complexity is mostly determined by the number of control points. Usually, this number of control points is chosen quite arbitrarily by intuitive trial-and-error-procedures. In this paper, the Akaike Information Criterion and the Bayesian Information Criterion are investigated with regard to a justified and reproducible choice of the optimal number of control points of B-spline curves. Additionally, we develop a method which is based on the structural risk minimization of the statistical learning theory. Unlike the Akaike and the Bayesian Information Criteria this method doesn’t use the number of parameters as complexity measure of the approximating functions but their Vapnik-Chervonenkis-dimension. Furthermore, it is also valid for non-linear models. Thus, the three methods differ in their target function to be minimized and consequently in their definition of optimality.The present paper will be continued by a second paper dealing with the choice of the optimal number of control points of B-spline surfaces.


2017 ◽  
Vol 11 (1) ◽  
Author(s):  
Corinna Harmening ◽  
Hans Neuner

AbstractFreeform surfaces like B-splines have proven to be a suitable tool to model laser scanner point clouds and to form the basis for an areal data analysis, for example an areal deformation analysis.A variety of parameters determine the B-spline's appearance, the B-spline's complexity being mostly determined by the number of control points. Usually, this parameter type is chosen by intuitive trial-and-error-procedures.In [The present paper continues these investigations. If necessary, the methods proposed in [The application of those methods to B-spline surfaces reveals the datum problem of those surfaces, meaning that location and number of control points of two B-splines surfaces are only comparable if they are based on the same parameterization. First investigations to solve this problem are presented.


2017 ◽  
Vol 5 (2) ◽  
pp. 173-179 ◽  
Author(s):  
Seonghyeon Moon ◽  
Kwanghee Ko

Abstract In this study, we present a method for improving the accuracy of the multilevel B-spline approximation (MBA) method. We combine a point projection method with the MBA method for reducing the approximation error by directly adjusting the control points in the local area. An initial surface is generated by the MBA method, and grid points are produced on the surface. These grid points are projected onto the scattered point set, and the distances between the grid points and the projected points are computed. The control points are then modified based on the distances. The proposed method shows better approximations even with the same number of control points and ensures C2-continuity. The experimental results with examples verify the validity of the proposed method. Highlights We propose a method for improving the multilevel B-spline approximation method. We use a point projection method for computing the amount of errors. The computed errors are directly applied to the control points for reducing the approximation error.


Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1054
Author(s):  
Rozaimi Zakaria ◽  
Abd. Fatah Wahab ◽  
Isfarita Ismail ◽  
Mohammad Izat Emir Zulkifly

This paper discusses the construction of a type-2 fuzzy B-spline model to model complex uncertainty of surface data. To construct this model, the type-2 fuzzy set theory, which includes type-2 fuzzy number concepts and type-2 fuzzy relation, is used to define the complex uncertainty of surface data in type-2 fuzzy data/control points. These type-2 fuzzy data/control points are blended with the B-spline surface function to produce the proposed model, which can be visualized and analyzed further. Various processes, namely fuzzification, type-reduction and defuzzification are defined to achieve a crisp, type-2 fuzzy B-spline surface, representing uncertainty complex surface data. This paper ends with a numerical example of terrain modeling, which shows the effectiveness of handling the uncertainty complex data.


Author(s):  
Joanna M. Brown ◽  
Malcolm I. G. Bloor ◽  
M. Susan Bloor ◽  
Michael J. Wilson

Abstract A PDE surface is generated by solving partial differential equations subject to boundary conditions. To obtain an approximation of the PDE surface in the form of a B-spline surface the finite element method, with the basis formed from B-spline basis functions, can be used to solve the equations. The procedure is simplest when uniform B-splines are used, but it is also feasible, and in some cases desirable, to use non-uniform B-splines. It will also be shown that it is possible, if required, to modify the non-uniform B-spline approximation in a variety of ways, using the properties of B-spline surfaces.


Author(s):  
Yuan Yuan ◽  
Shiyu Zhou

B-spline surfaces are widely used in engineering practices as a flexible and efficient mathematical model for product design, analysis, and assessment. In this paper, we propose a new sequential B-spline surface construction procedure using multiresolution measurements. At each iterative step of the proposed procedure, we first update knots vectors based on bias and variance decomposition of the fitting error and then incorporate new data into the current surface approximation to fit the control points using Kalman filtering technique. The asymptotical convergence property of the proposed procedure is proved under the framework of sieves method. Using numerical case studies, the effectiveness of the method under finite sample is tested and demonstrated.


2016 ◽  
Vol 3 (1(29)) ◽  
pp. 17
Author(s):  
Александр Михайлович Ковтун
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document