scholarly journals Limit theorems for the weights and the degrees in anN-interactions random graph model

2016 ◽  
Vol 14 (1) ◽  
pp. 414-424 ◽  
Author(s):  
István Fazekas ◽  
Bettina Porvázsnyik

Abstract A random graph evolution based on interactions of N vertices is studied. During the evolution both the preferential attachment rule and the uniform choice of vertices are allowed. The weight of an M-clique means the number of its interactions. The asymptotic behaviour of the weight of a fixed M-clique is studied. Asymptotic theorems for the weight and the degree of a fixed vertex are also presented. Moreover, the limits of the maximal weight and the maximal degree are described. The proofs are based on martingale methods.

2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
István Fazekas ◽  
Bettina Porvázsnyik

A random graph evolution mechanism is defined. The evolution studied is a combination of the preferential attachment model and the interaction of four vertices. The asymptotic behaviour of the graph is described. It is proved that the graph exhibits a power law degree distribution; in other words, it is scale-free. It turns out that any exponent in(2,∞)can be achieved. The proofs are based on martingale methods.


2021 ◽  
Vol 17 (4) ◽  
pp. 1-26
Author(s):  
Guy Even ◽  
Reut Levi ◽  
Moti Medina ◽  
Adi Rosén

We consider the problem of sampling from a distribution on graphs, specifically when the distribution is defined by an evolving graph model, and consider the time, space, and randomness complexities of such samplers. In the standard approach, the whole graph is chosen randomly according to the randomized evolving process, stored in full, and then queries on the sampled graph are answered by simply accessing the stored graph. This may require prohibitive amounts of time, space, and random bits, especially when only a small number of queries are actually issued. Instead, we propose a setting where one generates parts of the sampled graph on-the-fly, in response to queries, and therefore requires amounts of time, space, and random bits that are a function of the actual number of queries. Yet, the responses to the queries correspond to a graph sampled from the distribution in question. Within this framework, we focus on two random graph models: the Barabási-Albert Preferential Attachment model (BA-graphs) ( Science , 286 (5439):509–512) (for the special case of out-degree 1) and the random recursive tree model ( Theory of Probability and Mathematical Statistics , (51):1–28). We give on-the-fly generation algorithms for both models. With probability 1-1/poly( n ), each and every query is answered in polylog( n ) time, and the increase in space and the number of random bits consumed by any single query are both polylog( n ), where n denotes the number of vertices in the graph. Our work thus proposes a new approach for the access to huge graphs sampled from a given distribution, and our results show that, although the BA random graph model is defined by a sequential process, efficient random access to the graph’s nodes is possible. In addition to the conceptual contribution, efficient on-the-fly generation of random graphs can serve as a tool for the efficient simulation of sublinear algorithms over large BA-graphs, and the efficient estimation of their on such graphs.


2009 ◽  
Vol 12 (01) ◽  
pp. 45-71 ◽  
Author(s):  
JUN WANG ◽  
GREGORY PROVAN

Based on analyses of specific spatial networks, we compare the accuracy of three models in capturing topologies of two types of spatial networks: electronic circuits and brain networks. The models analyzed are an optimization model trading off multiple-objective constraints, an extended preferential attachment model with spatial constraints, and the generalized random graph model. First, we find that the optimization model and the spatial preferential attachment model can generate similar topological structures under appropriate parameters. Second, our experiments surprisingly show that the simple generalized random graph model outperforms the two proposed models. Third, we find that a series of spatial networks under global optimization of wire length, including the electronic circuits, brain networks, neuronal networks and transportation networks, have high s-metric values close to those of the corresponding generalized random graph models. These s-metric observations explain why the generalized random graph model can match the electronic circuits and the brain networks well from a probabilistic viewpoint, and distinguish their structures from self-organized spatial networks, such as the Internet.


Author(s):  
Mark Newman

An introduction to the mathematics of the Poisson random graph, the simplest model of a random network. The chapter starts with a definition of the model, followed by derivations of basic properties like the mean degree, degree distribution, and clustering coefficient. This is followed with a detailed derivation of the large-scale structural properties of random graphs, including the position of the phase transition at which a giant component appears, the size of the giant component, the average size of the small components, and the expected diameter of the network. The chapter ends with a discussion of some of the shortcomings of the random graph model.


2021 ◽  
Vol 30 (4) ◽  
pp. 525-537
Author(s):  
András Faragó ◽  

Random graphs are frequently used models of real-life random networks. The classical Erdös–Rényi random graph model is very well explored and has numerous nontrivial properties. In particular, a good number of important graph parameters that are hard to compute in the deterministic case often become much easier in random graphs. However, a fundamental restriction in the Erdös–Rényi random graph is that the edges are required to be probabilistically independent. This is a severe restriction, which does not hold in most real-life networks. We consider more general random graphs in which the edges may be dependent. Specifically, two models are analyzed. The first one is called a p-robust random graph. It is defined by the requirement that each edge exist with probability at least p, no matter how we condition on the presence/absence of other edges. It is significantly more general than assuming independent edges existing with probability p, as exemplified via several special cases. The second model considers the case when the edges are positively correlated, which means that the edge probability is at least p for each edge, no matter how we condition on the presence of other edges (but absence is not considered). We prove some interesting, nontrivial properties about both models.


2020 ◽  
Vol 29 (6) ◽  
pp. 830-867 ◽  
Author(s):  
Shagnik Das ◽  
Andrew Treglown

AbstractGiven graphs H1, H2, a graph G is (H1, H2) -Ramsey if, for every colouring of the edges of G with red and blue, there is a red copy of H1 or a blue copy of H2. In this paper we investigate Ramsey questions in the setting of randomly perturbed graphs. This is a random graph model introduced by Bohman, Frieze and Martin [8] in which one starts with a dense graph and then adds a given number of random edges to it. The study of Ramsey properties of randomly perturbed graphs was initiated by Krivelevich, Sudakov and Tetali [30] in 2006; they determined how many random edges must be added to a dense graph to ensure the resulting graph is with high probability (K3, Kt) -Ramsey (for t ≽ 3). They also raised the question of generalizing this result to pairs of graphs other than (K3, Kt). We make significant progress on this question, giving a precise solution in the case when H1 = Ks and H2 = Kt where s, t ≽ 5. Although we again show that one requires polynomially fewer edges than in the purely random graph, our result shows that the problem in this case is quite different to the (K3, Kt) -Ramsey question. Moreover, we give bounds for the corresponding (K4, Kt) -Ramsey question; together with a construction of Powierski [37] this resolves the (K4, K4) -Ramsey problem.We also give a precise solution to the analogous question in the case when both H1 = Cs and H2 = Ct are cycles. Additionally we consider the corresponding multicolour problem. Our final result gives another generalization of the Krivelevich, Sudakov and Tetali [30] result. Specifically, we determine how many random edges must be added to a dense graph to ensure the resulting graph is with high probability (Cs, Kt) -Ramsey (for odd s ≽ 5 and t ≽ 4).To prove our results we combine a mixture of approaches, employing the container method, the regularity method as well as dependent random choice, and apply robust extensions of recent asymmetric random Ramsey results.


Sign in / Sign up

Export Citation Format

Share Document