scholarly journals A modified quasi-boundary value method for an abstract ill-posed biparabolic problem

2017 ◽  
Vol 15 (1) ◽  
pp. 1649-1666 ◽  
Author(s):  
Khelili Besma ◽  
Boussetila Nadjib ◽  
Rebbani Faouzia

Abstract In this paper, we are concerned with the problem of approximating a solution of an ill-posed biparabolic problem in the abstract setting. In order to overcome the instability of the original problem, we propose a modified quasi-boundary value method to construct approximate stable solutions for the original ill-posed boundary value problem. Finally, some other convergence results including some explicit convergence rates are also established under a priori bound assumptions on the exact solution. Moreover, numerical tests are presented to illustrate the accuracy and efficiency of this method.

2013 ◽  
Vol 2013 ◽  
pp. 1-11
Author(s):  
Nadjib Boussetila ◽  
Salim Hamida ◽  
Faouzia Rebbani

We study an abstract elliptic Cauchy problem associated with an unbounded self-adjoint positive operator which has a continuous spectrum. It is well-known that such a problem is severely ill-posed; that is, the solution does not depend continuously on the Cauchy data. We propose two spectral regularization methods to construct an approximate stable solution to our original problem. Finally, some other convergence results including some explicit convergence rates are also established under a priori bound assumptions on the exact solution.


2020 ◽  
Vol 28 (5) ◽  
pp. 659-676
Author(s):  
Dinh Nho Hào ◽  
Nguyen Van Duc ◽  
Nguyen Van Thang ◽  
Nguyen Trung Thành

AbstractThe problem of determining the initial condition from noisy final observations in time-fractional parabolic equations is considered. This problem is well known to be ill-posed, and it is regularized by backward Sobolev-type equations. Error estimates of Hölder type are obtained with a priori and a posteriori regularization parameter choice rules. The proposed regularization method results in a stable noniterative numerical scheme. The theoretical error estimates are confirmed by numerical tests for one- and two-dimensional equations.


Mathematics ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 331
Author(s):  
Bernd Hofmann ◽  
Christopher Hofmann

This paper deals with the Tikhonov regularization for nonlinear ill-posed operator equations in Hilbert scales with oversmoothing penalties. One focus is on the application of the discrepancy principle for choosing the regularization parameter and its consequences. Numerical case studies are performed in order to complement analytical results concerning the oversmoothing situation. For example, case studies are presented for exact solutions of Hölder type smoothness with a low Hölder exponent. Moreover, the regularization parameter choice using the discrepancy principle, for which rate results are proven in the oversmoothing case in in reference (Hofmann, B.; Mathé, P. Inverse Probl. 2018, 34, 015007) is compared to Hölder type a priori choices. On the other hand, well-known analytical results on the existence and convergence of regularized solutions are summarized and partially augmented. In particular, a sketch for a novel proof to derive Hölder convergence rates in the case of oversmoothing penalties is given, extending ideas from in reference (Hofmann, B.; Plato, R. ETNA. 2020, 93).


2001 ◽  
Vol 7 (2) ◽  
pp. 129-145 ◽  
Author(s):  
M. Denche ◽  
K. Bessila

In this paper we study the problem of control by the initial conditions of the heat equation with an integral boundary condition. This problem is ill-posed. Perturbing the final condition we obtain an approximate nonlocal problem depending on a small parameter. We show that the approximate problems are well posed. We also obtain estimates of the solutions of the approximate problems and a convergence result of these solutions. Finally, we give explicit convergence rates.


2011 ◽  
Vol 2011 ◽  
pp. 1-11
Author(s):  
Salah Djezzar ◽  
Nihed Teniou

We consider in this paper an abstract parabolic backward Cauchy problem associated with an unbounded linear operator in a Hilbert space , where the coefficient operator in the equation is an unbounded self-adjoint positive operator which has a continuous spectrum and the data is given at the final time and a solution for is sought. It is well known that this problem is illposed in the sense that the solution (if it exists) does not depend continuously on the given data. The method of regularization used here consists of perturbing both the equation and the final condition to obtain an approximate nonlocal problem depending on two small parameters. We give some estimates for the solution of the regularized problem, and we also show that the modified problem is stable and its solution is an approximation of the exact solution of the original problem. Finally, some other convergence results including some explicit convergence rates are also provided.


2019 ◽  
Vol 27 (4) ◽  
pp. 575-590 ◽  
Author(s):  
Wei Wang ◽  
Shuai Lu ◽  
Bernd Hofmann ◽  
Jin Cheng

Abstract Measuring the error by an {\ell^{1}} -norm, we analyze under sparsity assumptions an {\ell^{0}} -regularization approach, where the penalty in the Tikhonov functional is complemented by a general stabilizing convex functional. In this context, ill-posed operator equations {Ax=y} with an injective and bounded linear operator A mapping between {\ell^{2}} and a Banach space Y are regularized. For sparse solutions, error estimates as well as linear and sublinear convergence rates are derived based on a variational inequality approach, where the regularization parameter can be chosen either a priori in an appropriate way or a posteriori by the sequential discrepancy principle. To further illustrate the balance between the {\ell^{0}} -term and the complementing convex penalty, the important special case of the {\ell^{2}} -norm square penalty is investigated showing explicit dependence between both terms. Finally, some numerical experiments verify and illustrate the sparsity promoting properties of corresponding regularized solutions.


Sign in / Sign up

Export Citation Format

Share Document