Arithmetical properties of double Möbius-Bernoulli numbers
Keyword(s):
Abstract Given positive integers n, n′ and k, we investigate the Möbius-Bernoulli numbers Mk(n), double Möbius-Bernoulli numbers Mk(n,n′), and Möbius-Bernoulli polynomials Mk(n)(x). We find new identities involving double Möbius-Bernoulli, Barnes-Bernoulli numbers and Dedekind sums. In part of this paper, the Möbius-Bernoulli polynomials Mk(n)(x), can be interpreted as critical values of the following Dirichlet type L-function $$\begin{array}{} \displaystyle L_{HM}(s;n,x):=\sum_{d|n} \sum_{m= 0}^\infty \frac{\mu(d)}{(md+x)^s} \, \, \text{(for Re} (s) \gt 1), \end{array} $$ which has analytic continuation to the whole s-complex plane, where μ is the Möbius function.
Keyword(s):
1962 ◽
Vol 13
(2)
◽
pp. 139-142
◽
Keyword(s):
1966 ◽
Vol 9
(05)
◽
pp. 571-574
◽
Keyword(s):
1987 ◽
Vol 101
(2)
◽
pp. 221-231
◽
Keyword(s):