scholarly journals Sums of Products Involving Power Sums of φ(n) Integers

2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Jitender Singh

A sequence of rational numbers as a generalization of the sequence of Bernoulli numbers is introduced. Sums of products involving the terms of this generalized sequence are then obtained using an application of Faà di Bruno's formula. These sums of products are analogous to the higher order Bernoulli numbers and are used to develop the closed form expressions for the sums of products involving the power sums Ψk(x,n):=∑d|n‍μ(d)dkSkx/d,  n∈ℤ+ which are defined via the Möbius function μ and the usual power sum Sk(x) of a real or complex variable x. The power sum Sk(x) is expressible in terms of the well-known Bernoulli polynomials by Sk(x):=(Bk+1(x+1)-Bk+1(1))/(k+1).

Symmetry ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 847 ◽  
Author(s):  
Dmitry V. Dolgy ◽  
Dae San Kim ◽  
Jongkyum Kwon ◽  
Taekyun Kim

In this paper, we investigate some identities on Bernoulli numbers and polynomials and those on degenerate Bernoulli numbers and polynomials arising from certain p-adic invariant integrals on Z p . In particular, we derive various expressions for the polynomials associated with integer power sums, called integer power sum polynomials and also for their degenerate versions. Further, we compute the expectations of an infinite family of random variables which involve the degenerate Stirling polynomials of the second and some value of higher-order Bernoulli polynomials.


2009 ◽  
Vol 2009 ◽  
pp. 1-8 ◽  
Author(s):  
Taekyun Kim ◽  
Seog-Hoon Rim ◽  
Byungje Lee

By the properties ofp-adic invariant integral onℤp, we establish various identities concerning the generalized Bernoulli numbers and polynomials. From the symmetric properties ofp-adic invariant integral onℤp, we give some interesting relationship between the power sums and the generalized Bernoulli polynomials.


1962 ◽  
Vol 14 ◽  
pp. 565-567 ◽  
Author(s):  
P. J. McCarthy

The Bernoulli polynomials of order k, where k is a positive integer, are defined byBm(k)(x) is a polynomial of degree m with rational coefficients, and the constant term of Bm(k)(x) is the mth Bernoulli number of order k, Bm(k). In a previous paper (3) we obtained some conditions, in terms of k and m, which imply that Bm(k)(x) is irreducible (all references to irreducibility will be with respect to the field of rational numbers). In particular, we obtained the following two results.


2008 ◽  
Vol 2008 ◽  
pp. 1-7 ◽  
Author(s):  
Taekyun Kim

Kupershmidt and Tuenter have introduced reflection symmetries for theq-Bernoulli numbers and the Bernoulli polynomials in (2005), (2001), respectively. However, they have not dealt with congruence properties for these numbers entirely. Kupershmidt gave a quantization of the reflection symmetry for the classical Bernoulli polynomials. Tuenter derived a symmetry of power sum polynomials and the classical Bernoulli numbers. In this paper, we study the new symmetries of theq-Bernoulli numbers and polynomials, which are different from Kupershmidt's and Tuenter's results. By using our symmetries for theq-Bernoulli polynomials, we can obtain some interesting relationships betweenq-Bernoulli numbers and polynomials.


2009 ◽  
Vol 05 (01) ◽  
pp. 41-53 ◽  
Author(s):  
JITENDER SINGH

Let n be a positive integer and φ(n) denotes the Euler phi function. It is well known that the power sum of n can be evaluated in closed form in terms of n. Also, the sum of all those φ(n) positive integers that are coprime to n and not exceeding n, is expressible in terms of n and φ(n). Although such results already exist in literature, but here we have presented some new analytical results in these connections. Some functional and integral relations are derived for the general power sums.


2019 ◽  
Vol 17 (1) ◽  
pp. 32-42
Author(s):  
Abdelmejid Bayad ◽  
Daeyeoul Kim ◽  
Yan Li

Abstract Given positive integers n, n′ and k, we investigate the Möbius-Bernoulli numbers Mk(n), double Möbius-Bernoulli numbers Mk(n,n′), and Möbius-Bernoulli polynomials Mk(n)(x). We find new identities involving double Möbius-Bernoulli, Barnes-Bernoulli numbers and Dedekind sums. In part of this paper, the Möbius-Bernoulli polynomials Mk(n)(x), can be interpreted as critical values of the following Dirichlet type L-function $$\begin{array}{} \displaystyle L_{HM}(s;n,x):=\sum_{d|n} \sum_{m= 0}^\infty \frac{\mu(d)}{(md+x)^s} \, \, \text{(for Re} (s) \gt 1), \end{array} $$ which has analytic continuation to the whole s-complex plane, where μ is the Möbius function.


2002 ◽  
Vol 65 (1) ◽  
pp. 59-71 ◽  
Author(s):  
Min-Soo Kim ◽  
Jin-Woo Son

In this paper, using a multidimensional Volkenborn integral, we give a p-adic expression of the higher order Bernoulli numbers. This shows immediately the relation to the sums of products of the ordinary Bernoulli numbers of Dilcher in 1996. We also consider the Mahler expansion of several p-adic variables function, and give some examples.


Author(s):  
Arnold Adelberg

Several new estimates for the [Formula: see text]-adic valuations of Stirling numbers of the second kind are proved. These estimates, together with criteria for when they are sharp, lead to improvements in several known theorems and their proofs, as well as to new theorems, including a long-standing open conjecture by Lengyel. The estimates and criteria all depend on our previous analysis of powers of [Formula: see text] in the denominators of coefficients of higher order Bernoulli polynomials. The corresponding estimates for Stirling numbers of the first kind are also proved. Some attention is given to asymptotic cases, which will be further explored in subsequent publications.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 648
Author(s):  
Ghulam Muhiuddin ◽  
Waseem Ahmad Khan ◽  
Ugur Duran ◽  
Deena Al-Kadi

The purpose of this paper is to construct a unified generating function involving the families of the higher-order hypergeometric Bernoulli polynomials and Lagrange–Hermite polynomials. Using the generating function and their functional equations, we investigate some properties of these polynomials. Moreover, we derive several connected formulas and relations including the Miller–Lee polynomials, the Laguerre polynomials, and the Lagrange Hermite–Miller–Lee polynomials.


Sign in / Sign up

Export Citation Format

Share Document