scholarly journals On the efficient simulation of the left-tail of the sum of correlated log-normal variates

2018 ◽  
Vol 24 (2) ◽  
pp. 101-115 ◽  
Author(s):  
Mohamed-Slim Alouini ◽  
Nadhir Ben Rached ◽  
Abla Kammoun ◽  
Raul Tempone

Abstract The sum of log-normal variates is encountered in many challenging applications such as performance analysis of wireless communication systems and financial engineering. Several approximation methods have been reported in the literature. However, these methods are not accurate in the tail regions. These regions are of primordial interest as small probability values have to be evaluated with high precision. Variance reduction techniques are known to yield accurate, yet efficient, estimates of small probability values. Most of the existing approaches have focused on estimating the right-tail of the sum of log-normal random variables (RVs). Here, we instead consider the left-tail of the sum of correlated log-normal variates with Gaussian copula, under a mild assumption on the covariance matrix. We propose an estimator combining an existing mean-shifting importance sampling approach with a control variate technique. This estimator has an asymptotically vanishing relative error, which represents a major finding in the context of the left-tail simulation of the sum of log-normal RVs. Finally, we perform simulations to evaluate the performances of the proposed estimator in comparison with existing ones.

1990 ◽  
Vol 4 (3) ◽  
pp. 229-309 ◽  
Author(s):  
Sheldon M. Ross

The use of the total hazard variable in simulation is studied. When estimating the mean time until a certain event occurs, this variable can be a powerful variance-reducing control variate. When estimating a small probability, it can be utilized as a direct estimator. Applications to reliability, quality control, and queueing are given.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Zineb El Filali Ech-Chafiq ◽  
Jérôme Lelong ◽  
Adil Reghai

Abstract Many pricing problems boil down to the computation of a high-dimensional integral, which is usually estimated using Monte Carlo. In fact, the accuracy of a Monte Carlo estimator with M simulations is given by σ M {\frac{\sigma}{\sqrt{M}}} . Meaning that its convergence is immune to the dimension of the problem. However, this convergence can be relatively slow depending on the variance σ of the function to be integrated. To resolve such a problem, one would perform some variance reduction techniques such as importance sampling, stratification, or control variates. In this paper, we will study two approaches for improving the convergence of Monte Carlo using Neural Networks. The first approach relies on the fact that many high-dimensional financial problems are of low effective dimensions. We expose a method to reduce the dimension of such problems in order to keep only the necessary variables. The integration can then be done using fast numerical integration techniques such as Gaussian quadrature. The second approach consists in building an automatic control variate using neural networks. We learn the function to be integrated (which incorporates the diffusion model plus the payoff function) in order to build a network that is highly correlated to it. As the network that we use can be integrated exactly, we can use it as a control variate.


1995 ◽  
Vol 25 (11) ◽  
pp. 1783-1794 ◽  
Author(s):  
Thomas B. Lynch

Three basic techniques are proposed for reducing the variance of the stand volume estimate provided by cylinder sampling and Ueno's method. Ueno's method is based on critical height sampling but does not require measurement of critical heights. Instead, a count of trees whose critical heights are less than randomly generated heights is used to estimate stand volume. Cylinder sampling selects sample trees for which randomly generated heights fall within cylinders formed by tree heights and point sampling plot sizes. The methods proposed here for variance reduction in cylinder sampling and Ueno's method are antithetic variates, importance sampling, and control variates. Cylinder sampling without variance reduction was the most efficient of 12 methods compared in computer simulation that used estimated measurement times. However, cylinder sampling requires knowledge of a combined variable individual tree volume equation. Of the three variance reduction techniques applied to Ueno's method, antithetic variates performed best in computer simulation.


2016 ◽  
Vol 4 (1) ◽  
Author(s):  
Thomas Deschatre

AbstractWe propose new copulae to model the dependence between two Brownian motions and to control the distribution of their difference. Our approach is based on the copula between the Brownian motion and its reflection. We show that the class of admissible copulae for the Brownian motions are not limited to the class of Gaussian copulae and that it also contains asymmetric copulae. These copulae allow for the survival function of the difference between two Brownian motions to have higher value in the right tail than in the Gaussian copula case. Considering two Brownian motions B1t and B2t, the main result is that the range of possible values for is the same for Markovian pairs and all pairs of Brownian motions, that is with φ being the cumulative distribution function of a standard Gaussian random variable.


Sign in / Sign up

Export Citation Format

Share Document