scholarly journals Automatic control variates for option pricing using neural networks

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Zineb El Filali Ech-Chafiq ◽  
Jérôme Lelong ◽  
Adil Reghai

Abstract Many pricing problems boil down to the computation of a high-dimensional integral, which is usually estimated using Monte Carlo. In fact, the accuracy of a Monte Carlo estimator with M simulations is given by σ M {\frac{\sigma}{\sqrt{M}}} . Meaning that its convergence is immune to the dimension of the problem. However, this convergence can be relatively slow depending on the variance σ of the function to be integrated. To resolve such a problem, one would perform some variance reduction techniques such as importance sampling, stratification, or control variates. In this paper, we will study two approaches for improving the convergence of Monte Carlo using Neural Networks. The first approach relies on the fact that many high-dimensional financial problems are of low effective dimensions. We expose a method to reduce the dimension of such problems in order to keep only the necessary variables. The integration can then be done using fast numerical integration techniques such as Gaussian quadrature. The second approach consists in building an automatic control variate using neural networks. We learn the function to be integrated (which incorporates the diffusion model plus the payoff function) in order to build a network that is highly correlated to it. As the network that we use can be integrated exactly, we can use it as a control variate.

2018 ◽  
Vol 24 (2) ◽  
pp. 101-115 ◽  
Author(s):  
Mohamed-Slim Alouini ◽  
Nadhir Ben Rached ◽  
Abla Kammoun ◽  
Raul Tempone

Abstract The sum of log-normal variates is encountered in many challenging applications such as performance analysis of wireless communication systems and financial engineering. Several approximation methods have been reported in the literature. However, these methods are not accurate in the tail regions. These regions are of primordial interest as small probability values have to be evaluated with high precision. Variance reduction techniques are known to yield accurate, yet efficient, estimates of small probability values. Most of the existing approaches have focused on estimating the right-tail of the sum of log-normal random variables (RVs). Here, we instead consider the left-tail of the sum of correlated log-normal variates with Gaussian copula, under a mild assumption on the covariance matrix. We propose an estimator combining an existing mean-shifting importance sampling approach with a control variate technique. This estimator has an asymptotically vanishing relative error, which represents a major finding in the context of the left-tail simulation of the sum of log-normal RVs. Finally, we perform simulations to evaluate the performances of the proposed estimator in comparison with existing ones.


2019 ◽  
Vol 11 (3) ◽  
pp. 815 ◽  
Author(s):  
Yijuan Liang ◽  
Xiuchuan Xu

Pricing multi-asset options has always been one of the key problems in financial engineering because of their high dimensionality and the low convergence rates of pricing algorithms. This paper studies a method to accelerate Monte Carlo (MC) simulations for pricing multi-asset options with stochastic volatilities. First, a conditional Monte Carlo (CMC) pricing formula is constructed to reduce the dimension and variance of the MC simulation. Then, an efficient martingale control variate (CV), based on the martingale representation theorem, is designed by selecting volatility parameters in the approximated option price for further variance reduction. Numerical tests illustrated the sensitivity of the CMC method to correlation coefficients and the effectiveness and robustness of our martingale CV method. The idea in this paper is also applicable for the valuation of other derivatives with stochastic volatility.


2017 ◽  
Vol 23 (3) ◽  
pp. 618-633 ◽  
Author(s):  
Nicholas W. M. Ritchie

AbstractSecondary fluorescence, the final term in the familiar matrix correction triumvirate Z·A·F, is the most challenging for Monte Carlo models to simulate. In fact, only two implementations of Monte Carlo models commonly used to simulate electron probe X-ray spectra can calculate secondary fluorescence—PENEPMA and NIST DTSA-IIa (DTSA-II is discussed herein). These two models share many physical models but there are some important differences in the way each implements X-ray emission including secondary fluorescence. PENEPMA is based on PENELOPE, a general purpose software package for simulation of both relativistic and subrelativistic electron/positron interactions with matter. On the other hand, NIST DTSA-II was designed exclusively for simulation of X-ray spectra generated by subrelativistic electrons. NIST DTSA-II uses variance reduction techniques unsuited to general purpose code. These optimizations help NIST DTSA-II to be orders of magnitude more computationally efficient while retaining detector position sensitivity. Simulations execute in minutes rather than hours and can model differences that result from detector position. Both PENEPMA and NIST DTSA-II are capable of handling complex sample geometries and we will demonstrate that both are of similar accuracy when modeling experimental secondary fluorescence data from the literature.


2014 ◽  
Vol 955-959 ◽  
pp. 1817-1824 ◽  
Author(s):  
Jiu Ru Dai ◽  
Meng Yi Li ◽  
Wu Wei Li ◽  
Tian Xia ◽  
Zhi Gang Zhang

With the prevalence of credit system, the stipulation of “academic warning” is written into the teaching management constitution by more colleges and universities. However, the establishment of this stipulation hasn’t formed unified and scientific standards at present. This paper aims at studying the credit setting of academic warning through the method of Monte Carlo simulation, and at applying multivariate normal distribution and variance reduction techniques to calculate relatively reasonable academic warning credit line, which provides a new train of thought and a universal method for colleges and universities to set specific standards.


Sign in / Sign up

Export Citation Format

Share Document