scholarly journals Recent Advances in Macromolecularly Imprinted Polymers by Controlled Radical Polymerization Techniques

2015 ◽  
Vol 3 (1) ◽  
Author(s):  
Huiqi Zhang

AbstractMolecularly imprinted polymers (MIPs) are synthetic receptors with tailor-made recognition sites for the target molecules. Their high molecular recognition ability, good stability, easy preparation, and low cost make them highly promising substitutes for biological receptors. Recent years have witnessed rapidly increasing interest in the imprinting of biomacromolecules and especially proteins because of the great potential of these MIPs in such applications as proteome analysis, clinical diagnostics, and biomedicine. So far, some useful strategies have been developed for the imprinting of proteins and controlled radical polymerization techniques have proven highly versatile for such purpose. This mini-review describes recent developments in the controlled preparation of proteins-imprinted polymers via such advanced polymerization techniques.

2020 ◽  
Vol 16 (3) ◽  
pp. 196-207 ◽  
Author(s):  
Yeşeren Saylan ◽  
Adil Denizli

Introduction: A molecular imprinting is one of the fascinating modification methods that employ molecules as targets to create geometric cavities for recognition of targets in the polymeric matrix. This method provides a broad versatility to imprint target molecules with different size, three-dimensional structure and physicochemical features. In contrast to the complex and timeconsuming laboratory surface modification procedures, this method offers a rapid, sensitive, inexpensive, easy-to-use, and selective approach for the diagnosis, screening and monitoring disorders. Owing to their unique features such as high selectivity, physical and chemical robustness, high stability, low-cost and reusability of this method, molecularly imprinted polymers have become very attractive materials and been applied in various applications from separation to detection. Background: The aims of this review are structured according to the fundamentals of molecularly imprinted polymers involving essential elements, preparation procedures and also the analytical applications platforms. Finally, the future perspectives to increase the development of molecularly imprinted platforms. Methods: A molecular imprinting is one of the commonly used modification methods that apply target as a recognition element itself and provide a wide range of versatility to replica other targets with a different structure, size, and physicochemical features. A rapid, easy, cheap and specific recognition approach has become one of the investigation areas on, especially biochemistry, biomedicine and biotechnology. In recent years, several technologies of molecular imprinting method have gained prompt development according to continuous use and improvement of traditional polymerization techniques. Results: The molecularly imprinted polymers with excellent performances have been prepared and also more exciting and universal applications have been recognized. In contrast to the conventional methods, the imprinted systems have superior advantages including high stability, relative ease and low cost of preparation, resistance to elevated temperature, and pressure and potential application to various target molecules. In view of these considerations, molecularly imprinted systems have found application in various fields of analytical chemistry including separation, purification, detection and spectrophotometric systems. Conclusion: Recent analytical methods are reported to develop the binding kinetics of imprinted systems by using the development of other technologies. The combined platforms are among the most encouraging systems to detect and recognize several molecules. The diversity of molecular imprinting methods was overviewed for different analytical application platforms. There is still a requirement of more knowledge on the molecular features of these polymers. A next step would further be the optimization of different systems with more homogeneous and easily reachable recognition sites to reduce the laborious in the accessibility in the three-dimensional polymeric materials in sufficient recognition features and also better selectivity and sensitivity for a wide range of molecules.


2015 ◽  
Vol 6 (41) ◽  
pp. 7320-7332 ◽  
Author(s):  
Mahadeo R. Halhalli ◽  
Börje Sellergren

The enhanced performance of molecularly imprinted polymers prepared by controlled radical polymerization in terms of affinity, selectivity, capacity and mass transfer properties is shown here to correlate with pore structure parameters in their dry and swollen states.


Chem ◽  
2020 ◽  
Vol 6 (7) ◽  
pp. 1575-1588 ◽  
Author(s):  
Kostas Parkatzidis ◽  
Hyun Suk Wang ◽  
Nghia P. Truong ◽  
Athina Anastasaki

2004 ◽  
Vol 50 (10) ◽  
pp. 1886-1893 ◽  
Author(s):  
Jessica E Koehne ◽  
Hua Chen ◽  
Alan M Cassell ◽  
Qi Ye ◽  
Jie Han ◽  
...  

Abstract Background: Reducing cost and time is the major concern in clinical diagnostics, particularly in molecular diagnostics. Miniaturization technologies have been recognized as promising solutions to provide low-cost microchips for diagnostics. With the recent advancement in nanotechnologies, it is possible to further improve detection sensitivity and simplify sample preparation by incorporating nanoscale elements in diagnostics devices. A fusion of micro- and nanotechnologies with biology has great potential for the development of low-cost disposable chips for rapid molecular analysis that can be carried out with simple handheld devices. Approach: Vertically aligned multiwalled carbon nanotubes (MWNTs) are fabricated on predeposited microelectrode pads and encapsulated in SiO2 dielectrics with only the very end exposed at the surface to form an inlaid nanoelectrode array (NEA). The NEA is used to collect the electrochemical signal associated with the target molecules binding to the probe molecules, which are covalently attached to the end of the MWNTs. Content: A 3 × 3 microelectrode array is presented to demonstrate the miniaturization and multiplexing capability. A randomly distributed MWNT NEA is fabricated on each microelectrode pad. Selective functionalization of the MWNT end with a specific oligonucleotide probe and passivation of the SiO2 surface with ethylene glycol moieties are discussed. Ru(bpy)2+-mediator-amplified guanine oxidation is used to directly measure the electrochemical signal associated with target molecules. Summary: The discussed MWNT NEAs have ultrahigh sensitivity in direct electrochemical detection of guanine bases in the nucleic acid target. Fewer than ∼1000 target nucleic acid molecules can be measured with a single microelectrode pad of ∼20 × 20 μm2, which approaches the detection limit of laser scanners in fluorescence-based DNA microarray techniques. MWNT NEAs can be easily integrated with microelectronic circuitry and microfluidics for development of a fully automated system for rapid molecular analysis with minimum cost.


2012 ◽  
Vol 65 (8) ◽  
pp. 970 ◽  
Author(s):  
H. T. Ho ◽  
M. E. Levere ◽  
D. Fournier ◽  
V. Montembault ◽  
S. Pascual ◽  
...  

Polymers containing the highly reactive azlactone group have emerged as a powerful platform useful in various application areas. This Highlight summarizes recent developments in the field of azlactone-derived polymers made in our group using controlled radical polymerizations (ATRP and RAFT) and ‘click’ chemistry methodology (thiol-Michael addition), leading to well defined reactive polymers.


2009 ◽  
Vol 62 (8) ◽  
pp. 751 ◽  
Author(s):  
Marc Bompart ◽  
Karsten Haupt

Molecularly imprinted polymers (MIPs) are tailor-made biomimetic receptors that are obtained by polymerization in the presence of molecular templates. They contain binding sites for target molecules with affinities and specificities on a par with those of natural receptors such as antibodies, hormone receptors, or enzymes. A great majority of the literature in the field describes materials based on polymers obtained by free radical polymerization. In order to solve general problems associated with MIPs, in particular their heterogeneity in terms of inner morphology and distribution of binding site affinities, it has been suggested to use modern methods of controlled/living radical polymerization for their synthesis. This also facilitates their generation in the form of nanomaterials, nanocomposites, and thin films, a strong recent trend in the field. The present paper reviews recent advances in the molecular imprinting area, with special emphasis on the use of controlled polymerization methods, their benefits, and current limitations.


Sign in / Sign up

Export Citation Format

Share Document