scholarly journals Landau quantisation of photonic spin Hall effect in monolayer black phosphorus

Nanophotonics ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 225-233 ◽  
Author(s):  
Guangyi Jia ◽  
Geng Li ◽  
Yan Zhou ◽  
Xianglong Miao ◽  
Xiaoying Zhou

AbstractThe photonic spin Hall effect (PSHE) is a promising candidate for controlling the spin states of photons and exploiting next-generation photonic devices based on spinoptics. Herein, the influences of a perpendicular magnetic field on the PSHE appearing on the surface of monolayer black phosphorus (BP) are investigated. Results reveal that both the in-plane and transverse spin-dependent shifts are quantised and show an oscillating pattern due to the splitting of Landau levels (LLs) induced by the external magnetic field B. And the oscillation period of spin Hall shifts gradually increases with strengthening B because of the increase of LL spacings. By contrast, for a fixed magnetic field, as the LL spacings become smaller and smaller with increasing the LL index, the oscillation period of spin Hall shifts gradually decreases as the photonic energy increases. Moreover, it is possibly due to the synergistic role of intrinsic anisotropy, high crystallinity, and quantisation-incurred localised decreases in beating-like complex conductivities of the BP film, giant spin Hall shifts, hundreds of times of the incident wavelength, are obtained in both transverse and in-plane directions. These unambiguously confirm the strong impact of the external magnetic field on the PSHE and shed important insights into understanding the rich magneto-optical transport properties in anisotropic two-dimensional atomic crystals.

2018 ◽  
Vol 91 (8) ◽  
Author(s):  
Börge Göbel ◽  
Alexander Mook ◽  
Jürgen Henk ◽  
Ingrid Mertig

Abstract Hall effects of electrons can be produced by an external magnetic field, spin–orbit coupling or a topologically non-trivial spin texture. The topological Hall effect (THE) – caused by the latter – is commonly observed in magnetic skyrmion crystals. Here, we show analogies of the THE to the conventional Hall effect (HE), the anomalous Hall effect (AHE), and the spin Hall effect (SHE). In the limit of strong coupling between conduction electron spins and the local magnetic texture the THE can be described by means of a fictitious, “emergent” magnetic field. In this sense the THE can be mapped onto the HE caused by an external magnetic field. Due to complete alignment of electron spin and magnetic texture, the transverse charge conductivity is linked to a transverse spin conductivity. They are disconnected for weak coupling of electron spin and magnetic texture; the THE is then related to the AHE. The topological equivalent to the SHE can be found in antiferromagnetic skyrmion crystals. We substantiate our claims by calculations of the edge states for a finite sample. These states reveal in which situation the topological analogue to a quantized HE, quantized AHE, and quantized SHE can be found.


Nanophotonics ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 715-723 ◽  
Author(s):  
Guang Yi Jia ◽  
Zhen Xian Huang ◽  
Qiao Yun Ma ◽  
Geng Li

AbstractTopological optics is an emerging research area in which various topological and geometrical ideas are being proposed to design and manipulate the behaviors of photons. Here, the photonic spin Hall effect on the surfaces of topological Weyl semimetal (WSM) films was studied. Our results show that the spin-dependent splitting (i.e. photonic spin Hall shifts) induced by the spin-orbit interaction is little sensitive to the tilt αt of Weyl nodes and the chemical potential μ in type-I WSM film. In contrast, photonic spin Hall shifts in both the in-plane and transverse directions present versatile dependent behaviors on the αt and μ in type-II WSM film. In particular, the largest in-plane and transverse spin Hall shifts appear at the tilts between −2 and −3, which are ~40 and ~10 times of the incident wavelength, respectively. Nevertheless, the largest spin Hall shifts for type-II WSM film with positive αt are only several times of incident wavelength. Moreover, the photonic spin Hall shifts also exhibit different variation trends with decreasing the chemical potential for different signs of αt in type-II WSM films. This dependence of photonic spin Hall shifts on tilt orientation in type-II WSM films has been explained by time-reversal-symmetry-breaking Hall conductivities in WSMs.


Nanophotonics ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 1929-1937 ◽  
Author(s):  
Hai Lin ◽  
Binguo Chen ◽  
Songqing Yang ◽  
Wenguo Zhu ◽  
Jianhui Yu ◽  
...  

AbstractAs a two-dimensional (2D) material, black phosphorus (BP) has attracted significant attention owing to exotic physical properties such as low-energy band gap, high carrier mobility, and strong in-plane anisotropy. The striking in-plane anisotropy is a promising candidate for novel light-matter interaction. Here, we investigate the photonic spin Hall effect (PSHE) on a monolayer of BP. Due to the in-plane anisotropic property of BP, the PSHE is accompanied with Goos-Hänchen and Imbert-Fedorov effects, resulting in an asymmetric spin splitting. The asymmetric spin splitting can be flexibly tuned by the angle between the incident plane and the armchair crystalline direction of BP and by the carrier density via a bias voltage. The centroid displacements of two opposite spin components of the reflected beam along directions parallel and perpendicular to the incident plane can be considered as four independent channels for information processing. The potential application in barcode-encryption is proposed and discussed. These findings provide a deeper insight into the spin-orbit interaction in 2D material and thereby facilitate the development of optoelectronic devices in the Terahertz region.


2020 ◽  
Vol 93 (10) ◽  
Author(s):  
Chenchen Liu ◽  
Feng Wu ◽  
Qingyun Jiang ◽  
Yihang Chen ◽  
Chengping Yin

2009 ◽  
Vol 06 (02) ◽  
pp. 343-360 ◽  
Author(s):  
AHMED JELLAL ◽  
RACHID HOUÇA

We propose an approach based on a generalized quantum mechanics to deal with the basic features of the intrinsic spin Hall effect. This can be done by considering two decoupled harmonic oscillators on the noncommutative plane and evaluating the spin Hall conductivity. Focusing on the high frequency regime, we obtain a diagonalized Hamiltonian. After getting the corresponding spectrum, we show that there is a Hall conductivity without an external magnetic field, which is noncommutativity parameter θ-dependent. This allows us to make contact with the spin Hall effect and also give different interpretations. Fixing θ, one can recover three different approaches dealing with the phenomenon.


2013 ◽  
Vol 88 (3) ◽  
Author(s):  
S. Morina ◽  
T. C. H. Liew ◽  
I. A. Shelykh

2008 ◽  
Vol 78 (15) ◽  
Author(s):  
L. Y. Wang ◽  
C. S. Chu ◽  
A. G. Mal’shukov

Sign in / Sign up

Export Citation Format

Share Document