scholarly journals Photon recycling in perovskite solar cells and its impact on device design

Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Waseem Raja ◽  
Michele De Bastiani ◽  
Thomas G. Allen ◽  
Erkan Aydin ◽  
Arsalan Razzaq ◽  
...  

Abstract Metal halide perovskites have emerged in recent years as promising photovoltaic materials due to their excellent optical and electrical properties, enabling perovskite solar cells (PSCs) with certified power conversion efficiencies (PCEs) greater than 25%. Provided radiative recombination is the dominant recombination mechanism, photon recycling – the process of reabsorption (and re-emission) of photons that result from radiative recombination – can be utilized to further enhance the PCE toward the Shockley–Queisser (S-Q) theoretical limit. Geometrical optics can be exploited for the intentional trapping of such re-emitted photons within the device, to enhance the PCE. However, this scheme reaches its fundamental diffraction limits at the submicron scale. Therefore, introducing photonic nanostructures offer attractive solutions to manipulate and trap light at the nanoscale via light coupling into guided modes, as well as localized surface plasmon and surface plasmon polariton modes. This review focuses on light-trapping schemes for efficient photon recycling in PSCs. First, we summarize the working principles of photon recycling, which is followed by a review of essential requirements to make this process efficient. We then survey photon recycling in state-of-the-art PSCs and propose design strategies to invoke light-trapping to effectively exploit photon recycling in PSCs. Finally, we formulate a future outlook and discuss new research directions in the context of photon recycling.

Author(s):  
James P. Connolly

The analytical modelling of bulk and quantum well solar cells is reviewed. The analytical approach allows explicit estimates of dominant generation and recombination mechanisms at work in charge neutral and space charge layers of the cells. Consistency of the analysis of cell characteristics in the light and in the dark leaves a single free parameter, which is the mean Shockley-Read-Hall lifetime. Bulk PIN cells are shown to be inherently dominated by non-radiative recombination as a result of the doping related non-radiative fraction of the Shockley injection currents. Quantum well PIN solar cells on the other hand are shown to operate in the radiative limit as a result of the dominance of radiative recombination in the space charge region. These features are exploited using light trapping techniques leading to photon recycling and reduced radiative recombination. The conclusion is that the mirror backed quantum well solar cell device features open circuit voltages determined mainly by the higher bandgap neutral layers, with an absorption threshold determined by the lower gap quantum well superlattice.


Energies ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1471 ◽  
Author(s):  
Lung-Chien Chen ◽  
Ching-Ho Tien ◽  
Kuan-Lin Lee ◽  
Yu-Ting Kao

We demonstrate a method to enhance the power conversion efficiency (PCE) of MAPbI3 perovskite solar cells through localized surface plasmon (LSP) coupling with gold nanoparticles:CsPbBr3 hybrid perovskite quantum dots (AuNPs:QD-CsPbBr3). The plasmonic AuNPs:QD-CsPbBr3 possess the features of high light-harvesting capacity and fast charge transfer through the LSP resonance effect, thus improving the short-circuit current density and the fill factor. Compared to the original device without Au NPs, a 27.8% enhancement in PCE of plasmonic AuNPs:QD-CsPbBr3/MAPbI3 perovskite solar cells was achieved upon 120 μL Au NP solution doping. This improvement can be attributed to the formation of surface plasmon resonance and light scattering effects in Au NPs embedded in QD-CsPbBr3, resulting in improved light absorption due to plasmonic nanoparticles.


Nanomaterials ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 815 ◽  
Author(s):  
Jiabin Hao ◽  
Huiying Hao ◽  
Jianfeng Li ◽  
Lei Shi ◽  
Tingting Zhong ◽  
...  

In this contribution, the efficiencies of perovskite solar cells have been further enhanced, based on optical optimization studies. The photovoltaic devices with textured perovskite film can be obtained and a power conversion efficiency (PCE) of the textured fluorine-doped tin oxide (FTO)/Ag nanoparticles (NPs) embedded in c-TiO2/m-TiO2/CH3NH3PbI3/Spiro-OMeTAD/Au showed 33.7% enhancement, and a maximum of up to 14.01% was achieved. The efficiency enhancement can be attributed to the light trapping effect caused by the textured FTO and the incorporated Ag NPs, which can enhance scattering to extend the optical pathway in the photoactive layer of the solar cell. Interestingly, aside from enhanced light absorption, the charge transport characteristics of the devices can be improved by optimizing Ag NPs loading levels, which is due to the localized surface plasmon resonance (LSPR) from the incorporated Ag NPs. This light trapping strategy helps to provide an appropriated management for optical optimization of perovskite solar cells.


2014 ◽  
pp. 1195-1212
Author(s):  
James P. Connolly

The analytical modelling of bulk and quantum well solar cells is reviewed. The analytical approach allows explicit estimates of dominant generation and recombination mechanisms at work in charge neutral and space charge layers of the cells. Consistency of the analysis of cell characteristics in the light and in the dark leaves a single free parameter, which is the mean Shockley-Read-Hall lifetime. Bulk PIN cells are shown to be inherently dominated by non-radiative recombination as a result of the doping related non-radiative fraction of the Shockley injection currents. Quantum well PIN solar cells on the other hand are shown to operate in the radiative limit as a result of the dominance of radiative recombination in the space charge region. These features are exploited using light trapping techniques leading to photon recycling and reduced radiative recombination. The conclusion is that the mirror backed quantum well solar cell device features open circuit voltages determined mainly by the higher bandgap neutral layers, with an absorption threshold determined by the lower gap quantum well superlattice.


Sign in / Sign up

Export Citation Format

Share Document