scholarly journals Light Trapping Effect in Perovskite Solar Cells by the Addition of Ag Nanoparticles, Using Textured Substrates

Nanomaterials ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 815 ◽  
Author(s):  
Jiabin Hao ◽  
Huiying Hao ◽  
Jianfeng Li ◽  
Lei Shi ◽  
Tingting Zhong ◽  
...  

In this contribution, the efficiencies of perovskite solar cells have been further enhanced, based on optical optimization studies. The photovoltaic devices with textured perovskite film can be obtained and a power conversion efficiency (PCE) of the textured fluorine-doped tin oxide (FTO)/Ag nanoparticles (NPs) embedded in c-TiO2/m-TiO2/CH3NH3PbI3/Spiro-OMeTAD/Au showed 33.7% enhancement, and a maximum of up to 14.01% was achieved. The efficiency enhancement can be attributed to the light trapping effect caused by the textured FTO and the incorporated Ag NPs, which can enhance scattering to extend the optical pathway in the photoactive layer of the solar cell. Interestingly, aside from enhanced light absorption, the charge transport characteristics of the devices can be improved by optimizing Ag NPs loading levels, which is due to the localized surface plasmon resonance (LSPR) from the incorporated Ag NPs. This light trapping strategy helps to provide an appropriated management for optical optimization of perovskite solar cells.

RSC Advances ◽  
2015 ◽  
Vol 5 (8) ◽  
pp. 5667-5673 ◽  
Author(s):  
Sudarshana Banerjee ◽  
Ajoy K. Saha ◽  
Bibhutibhushan Show ◽  
Jhuma Ganguly ◽  
Raghunath Bhattacharyay ◽  
...  

Formation of PVP encapsulated Ag NPs with a regular rippled structure caused by molecular self organization is reported. Such pattern is supposed to act as an anti-reflection coating as well as plasmonic layer, for better light harvesting.


Polymers ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 427 ◽  
Author(s):  
Xiangfu Liu ◽  
Lin Hu ◽  
Rongwen Wang ◽  
Junli Li ◽  
Honggang Gu ◽  
...  

We report about a flexible substrate incorporating surface-confined silver nanoparticles on transparent polyimide (PI). The incorporated silver nanoparticles (Ag NPs), which possessed excellent adhesive strength with the PI substrate, induced localized surface plasmon resonance and light scattering effects by changing the particle size and interparticle distance to promote light harvesting in the perovskite solar cells. Moreover, the reduced sheet resistance was beneficial for the charge extraction and transportation in the devices when high-conductivity poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS, PH1000) was deposited on the Ag NP-confined PI serving as a flexible bottom electrode. A power conversion efficiency of 10.41% was obtained for the flexible perovskite solar cells based on a Ag NP-confined PI substrate (the particle size of the Ag NPs was 25 nm mixed with 40 nm), which was obviously enhanced in all parameters. Especially, a 61% improvement existed in the short-circuit current density compared to that based on the bare PI substrates. It indicates that the substrate would be a promising candidate for the development of flexible electronics.


Author(s):  
J F Li ◽  
H Y Hao ◽  
J B Hao ◽  
L Shi ◽  
J J Dong ◽  
...  

Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Waseem Raja ◽  
Michele De Bastiani ◽  
Thomas G. Allen ◽  
Erkan Aydin ◽  
Arsalan Razzaq ◽  
...  

Abstract Metal halide perovskites have emerged in recent years as promising photovoltaic materials due to their excellent optical and electrical properties, enabling perovskite solar cells (PSCs) with certified power conversion efficiencies (PCEs) greater than 25%. Provided radiative recombination is the dominant recombination mechanism, photon recycling – the process of reabsorption (and re-emission) of photons that result from radiative recombination – can be utilized to further enhance the PCE toward the Shockley–Queisser (S-Q) theoretical limit. Geometrical optics can be exploited for the intentional trapping of such re-emitted photons within the device, to enhance the PCE. However, this scheme reaches its fundamental diffraction limits at the submicron scale. Therefore, introducing photonic nanostructures offer attractive solutions to manipulate and trap light at the nanoscale via light coupling into guided modes, as well as localized surface plasmon and surface plasmon polariton modes. This review focuses on light-trapping schemes for efficient photon recycling in PSCs. First, we summarize the working principles of photon recycling, which is followed by a review of essential requirements to make this process efficient. We then survey photon recycling in state-of-the-art PSCs and propose design strategies to invoke light-trapping to effectively exploit photon recycling in PSCs. Finally, we formulate a future outlook and discuss new research directions in the context of photon recycling.


Coatings ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 404
Author(s):  
Abdul Sami ◽  
Arsalan Ansari ◽  
Muhammad Dawood Idrees ◽  
Muhammad Musharraf Alam ◽  
Junaid Imtiaz

Perovskite inorganic-organic solar cells are fabricated as a sandwich structure of mesostructured TiO2 as electron transport layer (ETL), CH3NH3PbI3 as active material layer (AML), and Spiro-OMeTAD as hole transport layer (HTL). The crystallinity, structural morphology, and thickness of TiO2 layer play a crucial role to improve the overall device performance. The randomly distributed one dimensional (1D) TiO2 nanowires (TNWs) provide excellent light trapping with open voids for active filling of visible light absorber compared to bulk TiO2. Solid-state photovoltaic devices based on randomly distributed TNWs and CH3NH3PbI3 are fabricated with high open circuit voltage Voc of 0.91 V, with conversion efficiency (CE) of 7.4%. Mott-Schottky analysis leads to very high built-in potential (Vbi) ranging from 0.89 to 0.96 V which indicate that there is no depletion layer voltage modulation in the perovskite solar cells fabricated with TNWs of different lengths. Moreover, finite-difference time-domain (FDTD) analysis revealed larger fraction of photo-generated charges due to light trapping and distribution due to field convergence via guided modes, and improved light trapping capability at the interface of TNWs/CH3NH3PbI3 compared to bulk TiO2.


Sign in / Sign up

Export Citation Format

Share Document