scholarly journals An adaptive mesh method for time dependent singularly perturbed differential-difference equations

2019 ◽  
Vol 8 (1) ◽  
pp. 328-339
Author(s):  
P. Pramod Chakravarthy ◽  
Kamalesh Kumar

Abstract In this paper, a time dependent singularly perturbed differential-difference convection-diffusion equation is solved numerically by using an adaptive grid method. Similar boundary value problems arise in computational neuroscience in determination of the behaviour of a neuron to random synaptic inputs. The mesh is constructed adaptively by using the concept of entorpy function. In the proposed scheme, prior information of the width and position of the layers are not required. The method is independent of perturbation parameter ε and gives us an oscillation free solution, without any user introduced parameters. Numerical examples are presented to show the accuracy and efficiency of the proposed scheme.

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Mesfin Mekuria Woldaregay ◽  
Worku Tilahun Aniley ◽  
Gemechis File Duressa

This paper deals with numerical treatment of singularly perturbed parabolic differential equations having large time delay. The highest order derivative term in the equation is multiplied by a perturbation parameter ε , taking arbitrary value in the interval 0 , 1 . For small values of ε , solution of the problem exhibits an exponential boundary layer on the right side of the spatial domain. The properties and bounds of the solution and its derivatives are discussed. The considered singularly perturbed time delay problem is solved using the Crank-Nicolson method in temporal discretization and exponentially fitted operator finite difference method in spatial discretization. The stability of the scheme is investigated and analysed using comparison principle and solution bound. The uniform convergence of the scheme is discussed and proven. The formulated scheme converges uniformly with linear order of convergence. The theoretical analysis of the scheme is validated by considering numerical test examples for different values of ε .


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Li-Bin Liu ◽  
Ying Liang ◽  
Xiaobing Bao ◽  
Honglin Fang

AbstractA system of singularly perturbed convection-diffusion equations with Robin boundary conditions is considered on the interval $[0,1]$ [ 0 , 1 ] . It is shown that any solution of such a problem can be expressed to a system of first-order singularly perturbed initial value problem, which is discretized by the backward Euler formula on an arbitrary nonuniform mesh. An a posteriori error estimation in maximum norm is derived to design an adaptive grid generation algorithm. Besides, in order to establish the initial values of the original problems, we construct a nonlinear optimization problem, which is solved by the Nelder–Mead simplex method. Numerical results are given to demonstrate the performance of the presented method.


Author(s):  
Lolugu Govindarao ◽  
Jugal Mohapatra

In this article, a singularly perturbed parabolic convection-diffusion equation on a rectangular domain is considered. The solution of the problem possesses regular boundary layer which appears in the spatial variable. To discretize the time derivative, we use two type of schemes, first the implicit Euler scheme and second the implicit trapezoidal scheme on a uniform mesh. For approximating the spatial derivatives, we use the monotone hybrid scheme, which is a combination of midpoint upwind scheme and central difference scheme with variable weights on Shishkin-type meshes (standard Shishkin mesh, Bakhvalov-Shishkin mesh and modified Bakhvalov-Shishkin mesh). We prove that both numerical schemes converge uniformly with respect to the perturbation parameter and are of second order accurate. Thomas algorithm is used to solve the tri-diagonal system. Finally, to support the theoretical results, we present a numerical experiment by using the proposed methods.


Author(s):  
Sundar Namala ◽  
Rizwan Uddin

Abstract Nodal integral methods (NIM) are a class of efficient coarse mesh methods that use transverse averaging to reduce the governing partial differential equation(s) (PDE) into a set of ordinary differential equations (ODE). The standard application of NIM is restricted to domains that have boundaries parallel to one of the coordinate axes/palnes (in 2D/3D). The hybrid nodal-integral/finite-element method (NI-FEM) reported here has been developed to extend the application of NIM to arbitrary domains. NI-FEM is based on the idea that the interior region and the regions with boundaries parallel to the coordinate axes (2D) or coordinate planes (3D) can be solved using NIM, and the rest of the domain can be discretized and solved using FEM. The crux of the hybrid NI-FEM is in developing interfacial conditions at the common interfaces between the NIM regions and FEM regions. We here report the development of hybrid NI-FEM for the time-dependent convection-diffusion equation (CDE) in arbitrary domains. Resulting hybrid numerical scheme is implemented in a parallel framework in Fortran and solved using PETSc. The preliminary approach to domain decomposition is also discussed. Numerical solutions are compared with exact solutions, and the scheme is shown to be second order accurate in both space and time. The order of approximations used for the development of the scheme are also shown to be second order. The hybrid method is more efficient compared to standalone conventional numerical schemes like FEM.


Sign in / Sign up

Export Citation Format

Share Document