scholarly journals Computational and traveling wave analysis of Tzitzéica and Dodd-Bullough-Mikhailov equations: An exact and analytical study

2021 ◽  
Vol 10 (1) ◽  
pp. 272-281
Author(s):  
Hülya Durur ◽  
Asıf Yokuş ◽  
Kashif Ali Abro

Abstract Computational and travelling wave solutions provide significant improvements in accuracy and characterize novelty of imposed techniques. In this context, computational and travelling wave solutions have been traced out for Tzitzéica and Dodd-Bullough-Mikhailov equations by means of (1/G′)-expansion method. The different types of solutions have constructed for Tzitzéica and Dodd-Bullough-Mikhailov equations in hyperbolic form. Moreover, solution function of Tzitzéica and Dodd-Bullough-Mikhailov equations has been derived in the format of logarithmic nature. Since both equations contain exponential terms so the solutions produced are expected to be in logarithmic form. Traveling wave solutions are presented in different formats from the solutions introduced in the literature. The reliability, effectiveness and applicability of the (1/G′)-expansion method produced hyperbolic type solutions. For the sake of physical significance, contour graphs, two dimensional and three dimensional graphs have been depicted for stationary wave. Such graphical illustration has been contrasted for stationary wave verses traveling wave solutions. Our graphical comparative analysis suggests that imposed method is reliable and powerful method for obtaining exact solutions of nonlinear evolution equations.

2016 ◽  
Vol 20 (3) ◽  
pp. 893-898 ◽  
Author(s):  
Yi Tian ◽  
Zai-Zai Yan

This paper considers a non-linear wave equation arising in fluid mechanics. The exact traveling wave solutions of this equation are given by using G'/G-expansion method. This process can be reduced to solve a system of determining equations, which is large and difficult. To reduce this process, we used Wu elimination method. Example shows that this method is effective.


2005 ◽  
Vol 60 (4) ◽  
pp. 221-228 ◽  
Author(s):  
Dengshan Wang ◽  
Hong-Qing Zhang

Abstract In this paper, with the aid of symbolic computation we improve the extended F-expansion method described in Chaos, Solitons and Fractals 22, 111 (2004) to solve the (2+1)-dimensional Korteweg de Vries equation. Using this method, we derive many exact non-travelling wave solutions. These are more general than the previous solutions derived with the extended F-expansion method. They include the Jacobi elliptic function, soliton-like trigonometric function solutions, and so on. Our method can be applied to other nonlinear evolution equations.


2012 ◽  
Vol 4 (1) ◽  
pp. 122-130 ◽  
Author(s):  
Xiaohua Liu ◽  
Weiguo Zhang ◽  
Zhengming Li

AbstractIn this work, the improved (G′/G)-expansion method is proposed for constructing more general exact solutions of nonlinear evolution equation with the aid of symbolic computation. In order to illustrate the validity of the method we choose the RLW equation and SRLW equation. As a result, many new and more general exact solutions have been obtained for the equations. We will compare our solutions with those gained by the other authors.


2014 ◽  
Vol 33 ◽  
pp. 83-92 ◽  
Author(s):  
Md. Ekramul Islam ◽  
Kamruzzaman Khan ◽  
M Ali Akbar ◽  
Rafiqul Islam

In this article, the Enhanced (G'/G)-expansion method has been projected to find the traveling wave solutions for nonlinear evolution equations(NLEEs) via the (2+1)-dimensional Burgers equation. The efficiency of this method for finding these exact solutions has been demonstrated with the help of symbolic computation software Maple. By this method we have obtained many new types of complexiton soliton solutions, such as, various combinations of trigonometric periodic function and rational function solutions, various combination of hyperbolic function and rational function solutions. The proposed method is direct, concise and effective, and can be used for many other nonlinear evolution equations. GANIT J. Bangladesh Math. Soc. Vol. 33 (2013) 83-92 DOI: http://dx.doi.org/10.3329/ganit.v33i0.17662


2018 ◽  
Vol 3 (2) ◽  
pp. 92-101
Author(s):  
Anika Tashin Khan ◽  
Hasibun Naher

We have generated many new non-travelling wave solutions by executing the new extended generalized and improved (G'/G)-Expansion Method. Here the nonlinear ordinary differential equation with many new and real parameters has been used as an auxiliary equation. We have investigated the Fisher equation to show the advantages and effectiveness of this method. The obtained non-travelling solutions are expressed through the hyperbolic functions, trigonometric functions and rational functional forms. Results showing that the method is concise, direct and highly effective to study nonlinear evolution equations those are in mathematical physics and engineering.


2018 ◽  
Vol 37 ◽  
pp. 1-14
Author(s):  
Zahidul Islam ◽  
Mohammad Mobarak Hossain ◽  
Md Abu Naim Sheikh

By using the improved (G¢/G) -expansion method, we obtained some travelling wave solutions of well-known nonlinear Sobolev type partial differential equations, namely, the Benney-Luke equation. We show that the improved (G¢/G) -expansion method is a useful, reliable, and concise method to solve these types of equations.GANIT J. Bangladesh Math. Soc.Vol. 37 (2017) 1-14


Sign in / Sign up

Export Citation Format

Share Document