Symbolic Computation and Non-travelling Wave Solutions of the (2+1)-Dimensional Korteweg de Vries Equation

2005 ◽  
Vol 60 (4) ◽  
pp. 221-228 ◽  
Author(s):  
Dengshan Wang ◽  
Hong-Qing Zhang

Abstract In this paper, with the aid of symbolic computation we improve the extended F-expansion method described in Chaos, Solitons and Fractals 22, 111 (2004) to solve the (2+1)-dimensional Korteweg de Vries equation. Using this method, we derive many exact non-travelling wave solutions. These are more general than the previous solutions derived with the extended F-expansion method. They include the Jacobi elliptic function, soliton-like trigonometric function solutions, and so on. Our method can be applied to other nonlinear evolution equations.

2017 ◽  
Vol 2017 ◽  
pp. 1-9
Author(s):  
Xueqin Wang ◽  
Yadong Shang ◽  
Huahui Di

We consider the Wick-type stochastic Schamel-Korteweg-de Vries equation with variable coefficients in this paper. With the aid of symbolic computation and Hermite transformation, by employing the (G′/G,1/G)-expansion method, we derive the new exact travelling wave solutions, which include hyperbolic and trigonometric solutions for the considered equations.


2014 ◽  
Vol 1 (2) ◽  
pp. 140038 ◽  
Author(s):  
Md. Shafiqul Islam ◽  
Kamruzzaman Khan ◽  
M. Ali Akbar ◽  
Antonio Mastroberardino

The purpose of this article is to present an analytical method, namely the improved F -expansion method combined with the Riccati equation, for finding exact solutions of nonlinear evolution equations. The present method is capable of calculating all branches of solutions simultaneously, even if multiple solutions are very close and thus difficult to distinguish with numerical techniques. To verify the computational efficiency, we consider the modified Benjamin–Bona–Mahony equation and the modified Korteweg-de Vries equation. Our results reveal that the method is a very effective and straightforward way of formulating the exact travelling wave solutions of nonlinear wave equations arising in mathematical physics and engineering.


2021 ◽  
Vol 10 (1) ◽  
pp. 272-281
Author(s):  
Hülya Durur ◽  
Asıf Yokuş ◽  
Kashif Ali Abro

Abstract Computational and travelling wave solutions provide significant improvements in accuracy and characterize novelty of imposed techniques. In this context, computational and travelling wave solutions have been traced out for Tzitzéica and Dodd-Bullough-Mikhailov equations by means of (1/G′)-expansion method. The different types of solutions have constructed for Tzitzéica and Dodd-Bullough-Mikhailov equations in hyperbolic form. Moreover, solution function of Tzitzéica and Dodd-Bullough-Mikhailov equations has been derived in the format of logarithmic nature. Since both equations contain exponential terms so the solutions produced are expected to be in logarithmic form. Traveling wave solutions are presented in different formats from the solutions introduced in the literature. The reliability, effectiveness and applicability of the (1/G′)-expansion method produced hyperbolic type solutions. For the sake of physical significance, contour graphs, two dimensional and three dimensional graphs have been depicted for stationary wave. Such graphical illustration has been contrasted for stationary wave verses traveling wave solutions. Our graphical comparative analysis suggests that imposed method is reliable and powerful method for obtaining exact solutions of nonlinear evolution equations.


2018 ◽  
Vol 3 (2) ◽  
pp. 92-101
Author(s):  
Anika Tashin Khan ◽  
Hasibun Naher

We have generated many new non-travelling wave solutions by executing the new extended generalized and improved (G'/G)-Expansion Method. Here the nonlinear ordinary differential equation with many new and real parameters has been used as an auxiliary equation. We have investigated the Fisher equation to show the advantages and effectiveness of this method. The obtained non-travelling solutions are expressed through the hyperbolic functions, trigonometric functions and rational functional forms. Results showing that the method is concise, direct and highly effective to study nonlinear evolution equations those are in mathematical physics and engineering.


2010 ◽  
Vol 65 (3) ◽  
pp. 209-214
Author(s):  
El-Said A. El-Wakil ◽  
Essam M. Abulwafa ◽  
Mohammed A. Abdou

This paper suggests a generalized F-expansion method for constructing new exact travelling wave solutions of a nonlinear coagulation problem with mass loss. This method can be used as an alternative to obtain analytical and approximate solutions of different types of kernel which are applied in physics. The nonlinear kinetic equation, which is an integro differential equation, is transformed into a differential equation using Laplace’s transformation. The inverse Laplace transformation of the solution gives the size distribution function of the system. As a result, many exact travelling wave solutions are obtained which include new periodic wave solutions, trigonometric function solutions, and rational solutions. The method is straightforward and concise,and it can also be applied to other nonlinear evolution equations arising in mathematical physics.


Sign in / Sign up

Export Citation Format

Share Document