Mass and volume in analytical chemistry (IUPAC Technical Report)

2018 ◽  
Vol 90 (3) ◽  
pp. 563-603 ◽  
Author(s):  
Maria F. Camões ◽  
Gary D. Christian ◽  
David Brynn Hibbert

Abstract This technical report reviews measurements of mass and volume, including a review of the SI for mass, length, and amount of substance; principles of mass measurement; calibration of masses and glassware; gravimetry; volumetry; and titrimetry. Measurement uncertainty, metrological traceability and aspects of quality assurance are also treated.

Author(s):  
D. Brynn Hibbert

Analytical chemical results touch everyones lives can we eat the food? do I have a disease? did the defendant leave his DNA at the crime scene? should I invest in that gold mine? When a chemist measures something how do we know that the result is appropriate? What is fit for purpose in the context of analytical chemistry? Many manufacturing and service companies have embraced traditional statistical approaches to quality assurance, and these have been adopted by analytical chemistry laboratories. However the right chemical answer is never known, so there is not a direct parallel with the manufacture of ball bearings which can be measured and assessed. The customer of the analytical services relies on the quality assurance and quality control procedures adopted by the laboratory. It is the totality of the QA effort, perhaps first brought together in this text, that gives the customer confidence in the result. QA in the Analytical Chemistry Laboratory takes the reader through all aspects of QA, from the statistical basics and quality control tools to becoming accredited to international standards. The latest understanding of concepts such as measurement uncertainty and metrological traceability are explained for a working chemist or her client. How to design experiments to optimize an analytical process is included, together with the necessary statistics to analyze the results. All numerical manipulation and examples are given as Microsoft Excel spreadsheets that can be implemented on any personal computer. Different kinds of interlaboratory studies are explained, and how a laboratory is judged in proficiency testing schemes is described. Accreditation to ISO 17025 or OECD GLP is nearly obligatory for laboratories of any pretension to quality. Here the reader will find an introduction to the requirements and philosophy of accreditation. Whether completing a degree course in chemistry or working in a busy analytical laboratory, this book is a single source for an introduction into quality assurance.


2002 ◽  
Vol 74 (5) ◽  
pp. 835-855 ◽  
Author(s):  
Michael Thompson ◽  
Stephen L. R. Ellison ◽  
Roger Wood

Method validation is one of the measures universally recognized as a necessary part of a comprehensive system of quality assurance in analytical chemistry. In the past, ISO, IUPAC, and AOAC International have cooperated to produce agreed protocols or guidelines on the "Design, conduct and interpretation of method performance studies" [1], on the "Proficiency testing of (chemical) analytical laboratories" [2], on "Internal quality control in analytical chemistry laboratories" [3], and on "The use of recovery information in analytical measurement" [4]. The Working Group that produced these protocols/guidelines has now been mandated by IUPAC to prepare guidelines on the single-laboratory validation of methods of analysis. These guidelines provide minimum recommendations on procedures that should be employed to ensure adequate validation of analytical methods. A draft of the guidelines has been discussed at an International Symposium on the Harmonization of Quality Assurance Systems in Chemical Laboratory, the proceedings from which have been published by the UK Royal Society of Chemistry.


RADIOISOTOPES ◽  
1999 ◽  
Vol 48 (2) ◽  
pp. 117-131
Author(s):  
Yoshinori TAKATA

Author(s):  
Werner Funk ◽  
Vera Dammann ◽  
Gerhild Donnevert ◽  
Sarah Ianelli ◽  
Eric Ianelli ◽  
...  

2017 ◽  
Vol 89 (7) ◽  
pp. 951-981 ◽  
Author(s):  
Roberto Marquardt ◽  
Juris Meija ◽  
Zoltan Mester ◽  
Marcy Towns ◽  
Ron Weir ◽  
...  

AbstractIn the proposed new SI, the kilogram will be redefined in terms of the Planck constant and the mole will be redefined in terms of the Avogadro constant. These redefinitions will have some consequences for measurements in chemistry. The goal of the Mole Project (IUPAC Project Number 2013-048-1-100) was to compile published work related to the definition of the quantity ‘amount of substance’, its unit the ‘mole’, and the consequence of these definitions on the unit of the quantity mass, the kilogram. The published work has been reviewed critically with the aim of assembling all possible aspects in order to enable IUPAC to judge the adequateness of the existing definitions or new proposals. Compilation and critical review relies on the broadest spectrum of interested IUPAC members.


Sign in / Sign up

Export Citation Format

Share Document